We propose a new method for music detection from broadcasting contents using the convolutional neural networks with a Mel-scale kernel. In this detection task, music segments should be annotated from the broadcast data, where music, speech, and noise are mixed. The convolutional neural network is composed of a convolutional layer with kernel that is trained to extract robust features. The Mel-scale changes the kernel size, and the backpropagation algorithm trains the kernel shape. We used 52 h of mixed broadcast data (25 h of music) to train the convolutional network and 24 h of collected broadcast data (ratio of music of 50-76%) for testing. The test data consisted of various genres (drama, documentary, news, kids, reality, and so on) that are broadcast in British English, Spanish, and Korean languages. The proposed method consistently showed better performance in all the three languages than the baseline system, and the F-score ranged from 86.5% for British data to 95.9% for Korean drama data. Our music detection system takes about 28 s to process a 1-min signal using only one CPU with 4 cores.
We propose a source separation architecture using dilated time-frequency DenseNet for background music identification of broadcast content. We apply source separation techniques to the mixed signals of music and speech. For the source separation purpose, we propose a new architecture to add a time-frequency dilated convolution to the conventional DenseNet in order to effectively increase the receptive field in the source separation scheme. In addition, we apply different convolutions to each frequency band of the spectrogram in order to reflect the different frequency characteristics of the low- and high-frequency bands. To verify the performance of the proposed architecture, we perform singing-voice separation and music-identification experiments. As a result, we confirm that the proposed architecture produces the best performance in both experiments because it uses the dilated convolution to reflect wide contextual information.
Herein, we proposed a multi-scale multi-band dilated time-frequency densely connected convolutional network (DenseNet) with long short-term memory (LSTM) for audio source separation. Because the spectrogram of the acoustic signal can be thought of as images as well as time series data, it is suitable for convolutional recurrent neural network (CRNN) architecture. We improved the audio source separation performance by applying the dilated block with a dilated convolution to CRNN architecture. The dilated block has the role of effectively increasing the receptive field in the spectrogram. In addition, it was designed in consideration of the acoustic characteristics that the frequency axis and the time axis in the spectrogram are changed by independent influences such as speech rate and pitch. In speech enhancement experiments, we estimated the speech signal using various deep learning architectures from a signal in which the music, noise, and speech were mixed. We conducted the subjective evaluation on the estimated speech signal. In addition, speech quality, intelligibility, separation, and speech recognition performance were also measured. In music signal separation, we estimated the music signal using several deep learning architectures from the mixture of the music and speech signal. After that, the separation performance and music identification accuracy were measured using the estimated music signal. Overall, the proposed architecture shows the best performance compared to other deep learning architectures not only in speech experiments but also in music experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.