Quality and productivity are both important in 3D printing products and processes. However, it is quite challenging to control the quality and productivity of each product due to several parameters involved in this additive manufacturing process. Most of the parameter settings depend on trial and error techniques which consume a lot of time and material waste. Therefore, in this study, the application of optimization approach which is Full Factorial Design (FFD) approach which has been employed on 3D printed housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer to minimize shrinkage on the 3D printed parts. Based on the optimization work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.
In the manufacturing industry, especially in automotive, quality, precision and productivity on the part that produces is crucial. 3D Printing technology offers a significant advantage to the manufacturer because its ability to produce complex geometry and low-cost investment risk compared with injection moulding. However, there are several issues of using this technology in mass scale and of the issue is dimensional accuracy. In this study, the application of optimisation approach which is Full Factorial Design (FFD) approach which has employed on 3D Printed bottom housing part made from Polylactic Acid (PLA) which were printed using Fused Deposition Modelling (FDM) 3D printer in order to minimise shrinkage on 3D printed parts. Based on the optimisation work, the results showed the performance of FFD approach provides a good dimensional accuracy compared to the drawing specification for the printed part. Therefore, this research provides beneficial scientific knowledge and alternative solution for the additive manufacturing process in industries application to enhance the quality of the 3D printed parts produced using FDM 3D printer machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.