Car body parts are sometimes responsible for irritating noise caused by assembly defects. Typically, various types of noise are known to originate from within the interior trim panels of car doors. This noise is considered to be an important factor that degrades the emotional satisfaction of the driver of the car. This research suggests an in-process inspection system consisting of an inspection workstation and a noise detection method. The inspection workstation presses down the car door trim panel by using a pneumatic pusher while microphones record the acoustic signals directly above the door trim panel and on the four sides of the workstation. The collected signals are analyzed by the proposed noise detection method after applying noise reduction. The noise detection method determines the presence of irritating noise by using noise source localization in combination with the time difference of arrival method and the relative signal strengths. The performance of the in-process noise detection system was evaluated by conducting experiments on faulty and healthy car door trim panels.
Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated.
The Buzz, Squeak, and Rattle (BSR) noises coming from car body parts are often caused by defective assembly. This paper presents an in-process BSR noise detection system for car door trims. A car door trim is slowly pressed down by a pneumatic pusher, and then the acoustic signals measured right above the door trim and on the four corners of the noise detection workstation are monitored for noise source localization by the time difference of arrival method and the relative signal strengths. Finally, the energy of BSR noise is examined by the discretized frequency information of the localized signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.