This study investigated the design of a virtual reality (VR) simulation integrating a haptic control interface for motor skill training. Twenty-four healthy participants were tested and trained in standardized psychomotor control tasks using native and VR forms with their nondominant hands in order to identify VR design features that might serve to accelerate motor learning. The study was also intended to make preliminary observations on the degree of specific motor skill development that can be achieved with a VR-based haptic simulation. Results revealed significant improvements in test performance following training for the VR with augmented haptic features with insignificant findings for the native task and VR with basic haptic features. Although performance during training was consistently better with the native task, a correspondence between the VR training and test task interfaces led to greater improvement in test performance as reported by a difference between baseline and post-test scores. These findings support use of VR-based haptic simulations of standardized psychomotor tests for motor skill training, including visual and haptic enhancements for effective pattern recognition and discrete movement of objects. The results may serve as an applicable guide for design of future haptic VR features.
This study investigated three-dimensional (3D) goaldirected movements in a virtual reality (VR) simulation of a standardized psychomotor control task. Movement trajectories were collected from 22 subjects and parsed based on an existing two-phase model of motor control including ballistic and correction phases. Kinematic measures were also acquired to provide further insight into motor skill learning. Results revealed kinematic measures of total numbers of submovements and numbers of submovements in the correction phase to be significantly correlated with psychomotor task scores. A predictive model applied to the 3D movements revealed the correction phase movements to be more predictive of psychomotor performance than the ballistic phase. Findings indicate a greater degree of fine motor skill was required for performance of the psychomotor control task. This research supports the use of high resolution kinematic measures as reliable predictors of psychomotor task performance.Virtual reality; submovement structure; cursor trajectory; block design task; motor learning
The effect of vibrotactile parameters were investigated on a 2D navigation task. Participants performed a simple navigation task reproducing directional information presented by a series of vibrotactile stimuli consisting of different levels of amplitude and frequency. Task completion time and degree of annoyance were measured. The results demonstrated that both frequency and amplitude had a significant effect on the responses. In addition, interaction effects between the two parameters were found on the responses. It was concluded that user performance and comfort are significantly affected by frequency and amplitude. The results give some insight into designing navigating information presented by vibrotactile display for visually impaired people. More studies with people with visual impairment and manipulation of other vibrotactile parameters are recommended to be applicable to the potential research.
A perturbation mark is occasionally produced on the velocity indicator of the cluster panel of a vehicle during a vehicle collision. This mark can be used to estimate the velocity of the vehicle at the moment of the vehicle's impact. In this study, the effect of the impact velocity and the deceleration of the vehicle on the perturbation mark were investigated, and an analysis of the driver's injury was also conducted through a numerical pulse representation and computer simulations. Sled and pendulum tests were used to replicate the conditions that produce a perturbation mark on the velocity indicator of a cluster panel. It was verified that a higher peak acceleration is more likely than the impact velocity to cause a perturbation mark. According to the computer simulation results, a driver's injury could be more severe at higher peak accelerations with a constant impact velocity. If a perturbation mark, which can be used to estimate the impact velocity, is found while investigating a vehicle accident, this mark reveals that the acceleration was higher than that listed in the related crash report. Therefore, the injuries of the occupants could be more serious than those expected at the reported impact velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.