Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer’s disease (cholinesterases and β-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were Albizia lebbeck (L.) Benth, Alpinia malaccensis (Burm.) Roscoe, Careya arborea Roxb., Diplazium esculentum (Retz.) Swartz, Kaempferia roscoeana Wall., Millettia brandisiana Kurz., Momordica charantia, Phyllanthus emblica L., Zingiber cassumunar Roxb, and Zingiber citriodorum J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). P. emblica was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while D. esculentum effectively inhibited β-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). C. arborea exhibited the highest inhibitory activities against lipase (47–51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while Mi. brandisiana dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.
Neuronal insulin resistance is a significant feature of Alzheimer’s disease (AD). Accumulated evidence has revealed the possible neuroprotective mechanisms of antidiabetic drugs in AD. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog and an antidiabetic agent, has a benefit in improving a peripheral insulin resistance. However, the neuronal effect of liraglutide on the model of neuronal insulin resistance with Alzheimer’s formation has not been thoroughly investigated. The present study discovered that liraglutide alleviated neuronal insulin resistance and reduced beta-amyloid formation and tau hyperphosphorylation in a human neuroblostoma cell line, SH-SY5Y. Liraglutide could effectively reverse deleterious effects of insulin overstimulation. In particular, the drug reversed the phosphorylation status of insulin receptors and its major downstream signaling molecules including insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK-3β). Moreover, liraglutide reduced the activity of beta secretase 1 (BACE-1) enzyme, which then decreased the formation of beta-amyloid in insulin-resistant cells. This indicated that liraglutide can reverse the defect of phosphorylation status of insulin signal transduction but also inhibit the formation of pathogenic Alzheimer’s proteins like Aβ in neuronal cells. We herein provided the possibility that the liraglutide-based therapy may be able to reduce such deleterious effects caused by insulin resistance. In view of the beneficial effects of liraglutide administration, these findings suggest that the use of liraglutide may be a promising therapy for AD with insulin-resistant condition.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. To fight the disease, natural products, including mulberry, with antioxidant activities and inhibitory activities against key enzymes (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-secretase 1 (BACE-1)) are of interest. However, even in the same cultivars, mulberry trees grown in different populated locations might possess disparate amounts of phytochemical profiles, leading to dissimilar health properties, which cause problems when comparing different cultivars of mulberry. Therefore, this study aimed to comparatively investigate the phytochemicals, antioxidant activities, and inhibitory activities against AChE, BChE, and BACE-1, of twenty-seven Morus spp. cultivated in the same planting area in Thailand. The results suggested that Morus fruit samples were rich in phenolics, especially cyanidin, kuromanin, and keracyanin. Besides, the aqueous Morus fruit extracts exhibited antioxidant activities, both in single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, while strong inhibitory activities against AD key enzymes were observed. Interestingly, among the twenty-seven Morus spp., Morus sp. code SKSM 810191 with high phytochemicals, antioxidant activities and in vitro anti-AD properties is a promising cultivar for further developed as a potential mulberry resource with health benefits against AD.
Thailand is located in the tropics and a wide variety of fruits are grown commercially. However, studies regarding the phytonutrients, anti-mutagenic and chemopreventive effects of these fruits are limited. Thus, phytochemical profiles and inhibition of key enzymes involved in obesity and diabetes, together with anti-mutagenic and chemopreventive properties of eight tropical fruit extracts cultivated in Thailand, including Psidium guajava ‘Kimju’, Psidium guajava ‘Keenok’, Ananas comosus ‘Pattavia’, Ananas comosus ‘Phulae’, Durio zibethinus ‘Chanee’, Durio zibethinus ‘Monthong’, Carica papaya ‘Khaekdum’ and Mangifera indica ‘Namdokmai’ were investigated. Different cultivars were also compared. Results showed that M. indica ‘Namdokmai’ was the most antioxidant-rich extract containing abundant 4-hydroxybenzoic acid and its derivative, gallic acid, as the main phenolics. M. indica ‘Namdokmai’ also exhibited high inhibitory capacities (>60% inhibition under studied conditions) against lipase, α-amylase and α-glucosidase, key enzymes as drug targets for controlling obesity and type 2 diabetes. Interestingly, all fruit extracts suppressed food mutagen-induced DNA mutations assayed by the Ames test, especially M. indica ‘Namdokmai’ and C. papaya ‘Khaekdum’ (>50% inhibition at 200 µg/plate). The M. indica ‘Namdokmai’ was also the most potent extract for suppression of cancer promotion (>90% inhibition at 200 µg/mL) followed by P. guajava ‘Kimju’, P. guajava ‘Keenok’ and C. papaya ‘Khaekdum’. Results potentially indicated that fruit intake after overcooked meat consumption might supplement nutrients and fiber and also reduce DNA mutation sources.
The Food and Agriculture Organization of the United Nations (FAO) estimates that more than 500 million people, especially in Asia and Africa, are suffering from malnutrition. Recently, livestock farming has increased to supply high-quality protein, with consequent impact on the global environment. Alternative food sources with high nutritive values that can substitute livestock demands are urgently required. Recently, edible crickets have been promoted by the FAO to ameliorate the food crisis. In this review, the distribution, nutritive values, health-promoting properties (antioxidant, anti-inflammatory, anti-diabetic and anti-obesity), safety, allergenicity as well as the potential hazards and risks for human consumption are summarized. Cricket farming may help to realize the United Nations sustainable development goal No. 2 Zero Hunger. The sustainability of cricket farming is also discussed in comparison with other livestock. The findings imply that edible crickets are safe for daily intake as a healthy alternative diet due to their high protein content and health-promoting properties. Appropriate use of edible crickets in the food and nutraceutical industries represents a global business potential. However, people who are allergic to shellfish should pay attention on cricket allergy. Thus, the objective of this review was to present in-depth and up-to-date information on edible crickets to advocate and enhance public perception of cricket-based food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.