Summary
Within the gastrointestinal stem cell niche, nerves help to regulate both normal and neoplastic stem cell dynamics. Here, we reveal the mechanisms underlying the cancer-nerve partnership. We find that Dclk1+ tuft cells and nerves are the main sources of acetylcholine (ACh) within the gastric mucosa. Cholinergic stimulation of the gastric epithelium induced nerve growth factor (NGF) expression, and in turn NGF overexpression within gastric epithelium expanded enteric nerves and promoted carcinogenesis. Ablation of Dclk1+ cells or blockade of NGF/Trk signaling inhibited epithelial proliferation and tumorigenesis in a muscarinic acetylcholine receptor-3 (M3R)-dependent manner, in part through suppression of Yes-Associated Protein (YAP) function. This feed-forward ACh-NGF axis activates the gastric cancer niche and offers a compelling target for tumor treatment and prevention.
Summary
The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1+ stem cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc mutation, and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer development is dependent on inflammation mediated by Cxcl12+ endothelial cells and Cxcr4+ gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets within the neoplastic gastric stem cell niche.
Myofibroblasts are a key cell type in wound repair, cardiovascular disease, and fibrosis and in the tumor-promoting microenvironment. The high accumulation of myofibroblasts in reactive stroma is predictive of the rate of cancer progression in many different tumors, yet the cell types of origin and the mechanisms that regulate proliferation and differentiation are unknown. We report here, for the first time to our knowledge, the characterization of normal human prostate-derived mesenchymal stem cells (MSCs) and the TGF-β1-regulated pathways that modulate MSC proliferation and myofibroblast differentiation. Human prostate MSCs combined with prostate cancer cells expressing TGF-β1 resulted in commitment to myofibroblasts. TGF-β1-regulated runt-related transcription factor 1 (RUNX1) was required for cell cycle progression and proliferation of progenitors. RUNX1 also inhibited, yet did not block, differentiation. Knockdown of RUNX1 in prostate or bone marrow-derived MSCs resulted in cell cycle arrest, attenuated proliferation, and constitutive differentiation to myofibroblasts. These data show that RUNX1 is a key transcription factor for MSC proliferation and cell fate commitment in myofibroblast differentiation. This work also shows that the normal human prostate gland contains tissue-derived MSCs that exhibit multilineage differentiation similar to bone marrow-derived MSCs. Targeting RUNX1 pathways may represent a therapeutic approach to affect myofibroblast proliferation and biology in multiple disease states. myofibroblast | MSC | RUNX1 | TGF-β1 | reactive stroma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.