Repeat proteins have recently been of great interest as potential alternatives to immunoglobulin antibodies due to their unique structural and biophysical features. We here present the development of a binding scaffold based on variable lymphocyte receptors, which are nonimmunoglobulin antibodies composed of Leucinerich repeat modules in jawless vertebrates, by module engineering. A template scaffold was first constructed by joining consensus repeat modules between the N-and C-capping motifs of variable lymphocyte receptors. The N-terminal domain of the template scaffold was redesigned based on the internalin-B cap by analyzing the modular similarity between the respective repeat units using a computational approach. The newly designed scaffold, termed "Repebody," showed a high level of soluble expression in bacteria, displaying high thermodynamic and pH stabilities. Ease of molecular engineering was shown by designing repebodies specific for myeloid differentiation protein-2 and hen egg lysozyme, respectively, by a rational approach. The crystal structures of designed repebodies were determined to elucidate the structural features and interaction interfaces. We demonstrate general applicability of the scaffold by selecting repebodies with different binding affinities for interleukin-6 using phage display.non-antibody scaffold | repeat protein | modular architecture | molecular binder
The importance of a downstream process for the purification of immunoglobulin antibodies is increasing with the growing application of monoclonal antibodies in many different areas. Although protein A is most commonly used for the affinity purification of antibodies, certain properties could be further improved: higher stability in alkaline solution and milder elution condition. Herein, we present the development of Fc-specific repebody by modular engineering approach and its potential as an affinity ligand for purification of human immunoglobulin antibodies. We previously developed the repebody scaffold composed of Leucine-rich repeat (LRR) modules. The scaffold was shown to be highly stable over a wide range of pH and temperature, exhibiting a modular architecture. We first selected a repebody that binds the Fc fragment of human immunoglobulin G (IgG) through a phage display and increased its binding affinity up to 1.9 × 10(-7) M in a module-by-module approach. The utility of the Fc-specific repebody was demonstrated by the performance of an immobilized repebody in affinity purification of antibodies from a mammalian cell-cultured medium. Bound-antibodies on an immobilized repebody were shown to be eluted at pH 4.0 with high purity (>94.6%) and recovery yield (>95.7%). The immobilized repebody allowed a repetitive purification process more than ten times without any loss of binding capability. The repebody remained almost intact even after incubation with 0.5 M NaOH for 15 days. The present approach could be effectively used for developing a repeat module-based binder for other target molecules for affinity purification.
Circulating tumor cells (CTCs) have attracted considerable attention as promising markers for diagnosing and monitoring the cancer status. Despite many technological advances in isolating CTCs, the capture efficiency and purity still remain challenges that limit clinical practice. Here, the construction of "nanotentacle"-structured magnetic particles using M13-bacteriophage and their application for the efficient capturing of CTCs is demonstrated. The M13-bacteriophage to magnetic particles followed by modification with PEG is conjugated, and further tethered monoclonal antibodies against the epidermal receptor 2 (HER2). The use of nanotentacle-structured magnetic particles results in a high capture purity (>45%) and efficiency (>90%), even for a smaller number of cancer cells (≈25 cells) in whole blood. Furthermore, the cancer cells captured are shown to maintain a viability of greater than 84%. The approach can be effectively used for capturing CTCs with high efficiency and purity for the diagnosis and monitoring of cancer status.
An immunoassay is the most widely used method for analyzing a variety of analytes based on antigen-antibody interactions in the biological and medical sciences. However, the use of secondary antibodies has certain shortcomings, such as a high cost, cross-reactivity, and loss of binding affinity during labeling. Herein, we present the development of repebodies specifically binding to immunoglobulin G with a different origin, which is a small-sized nonantibody scaffold composed of leucine-rich repeat (LRR) modules, for use in immunoassays and imaging. Repebodies specific for IgG from different species (i.e., mouse, human, and rabbit) were selected through a phage display, and their affinities were matured using a modular engineering approach. The respective repebodies were labeled with various signal generators such as horseradish peroxidase (HRP), a fluorescent dye, and quantum dots, and the resulting repebodies were used as alternatives to conventional secondary antibodies in typical immunoassays and imaging. The labeled repebodies enabled the detection of diverse target analytes with high sensitivity and specificity, showing a negligible cross-reactivity. Moreover, the repebodies labeled with different color-emitting quantum dots allowed the imaging of cell-surface receptors and proteins in a multiplex manner. The developed repebodies can be effectively used for sensitive immunoassays and multiplex imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.