Of the 27 healthcare workers (HCWs) who had contact with a fatally ill patient with severe thrombocytopenia syndrome in Korea (SFTS), 4 who were involved in cardiopulmonary resuscitation complained of fever and were diagnosed with SFTS via seroconversion. Exposure to respiratory secretions, blood, or gowns soiled by body fluids was significantly associated with infection of HCWs.
BackgroundSevere fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne viral disease caused by the SFTS virus (SFTSV) from Bunyaviridae that is endemic in East Asia. However, the genetic and evolutionary characteristics shared between tick- and human-derived Korean SFTSV strains are still limited.Methodology/Principal findingsIn this study we identify, for the first time, the genome sequence of a tick (Haemaphysalis longicornis)-derived Korean SFTSV strain (designated as KAGWT) and compare this virus with recent human SFTSV isolates to identify the genetic variations and relationships among SFTSV strains. The genome of the KAGWT strain is consistent with the described genome of other members of the genus Phlebovirus with 6,368 nucleotides (nt), 3,378 nt, and 1,746 nt in the Large (L), Medium (M) and Small (S) segments, respectively. Compared with other completely sequenced human-derived Korean SFTSV strains, the KAGWT strain had highest sequence identities at the nucleotide and deduced amino acid level in each segment with the KAGWH3 strain which was isolated from SFTS patient within the same region, although there is one unique amino acid substitution in the Gn protein (A66S). Phylogenetic analyses of complete genome sequences revealed that at least four different genotypes of SFTSV are co-circulating in South Korea, and that the tick- and human-derived Korean SFTSV strains (genotype B) are closely related to one another. Although we could not detect reassortant, which are commonly observed in segmented viruses, further large-scale surveillance and detailed genomic analysis studies are needed to better understand the molecular epidemiology, genetic diversity, and evolution of SFTSV.Conclusions/SignificanceFull-length sequence analysis revealed a clear association between the genetic origins of tick- and human-derived SFTSV strains. While the most prevalent Korean SFTSV is genotype B, at least four different genotypes of SFTSV strains are co-circulating in South Korea. These findings provide information regarding the molecular epidemiology, genetic diversity, and evolution of SFTSV in East Asia.
We sequenced the envelope (E) gene of 17 strains of the Japanese encephalitis virus (JEV) isolated in South Korea in 1983-2005 and compared the sequences with those from previously reported strains. Our results show the remarkable genetic stability of the E gene sequence in Korean JEV strains. Five pairs of E gene sequences from 10 Korean strains were identical, despite geographical differences and a maximum five-year time span. Sequence comparisons with other Asian strains revealed that the Korean strains are closely related to those from China, Japan, and Vietnam. Genotype 3 strains were predominant in Korea before 1993, when genotype 1 strain K93A07 was first isolated. The two genotypes were detected simultaneously in 1994 but since then, only genotype 1 has been isolated in South Korea. Thus, the genotype change occurred according to the year of isolation rather than the geographical origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.