This paper presents and discusses 30 cases of cadavers that had been transferred for forensic entomology investigations to the Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, northern Thailand, from 2000 to 2006. Variable death scenes were determined, including forested area and suburban and urban outdoor and indoor environments. The fly specimens found in the corpses obtained were the most commonly of the blow fly of family Calliphoridae, and consisted of Chrysomya megacephala (F.), Chrysomya rufifacies (Macquart) Chrysomya villeneuvi Patton, Chrysomya nigripes Aubertin, Chrysomya bezziana Villeneuve, Chrysomya chani Kurahashi, Lucilia cuprina (Wiedemann), Hemipyrellia ligurriens (Wiedemann), and two unknown species. Flies of the family Muscidae [Hydrotaea spinigera Stein, Synthesiomyia nudiseta (Wulp)], Piophilidae [Piophila casei (L.)], Phoridae [Megaselia scalaris (Loew)], Sarcophagidae [Parasarcophaga ruficornis (F.) and three unknown species], and Stratiomyiidae (Sargus sp.) were also collected from these human remains. Larvae and adults of the beetle, Dermestes maculatus DeGeer (Coleoptera: Dermestidae), were also found in some cases. Chrysomya megacephala and C. rufifacies were the most common species found in the ecologically varied death scene habitats associated with both urban and forested areas, while C. nigripes was commonly discovered in forested places. S. nudiseta was collected only from corpses found in an indoor death scene.
Morphology of the alimentary canal of the mature third instar larva of the blow fly, Chrysomya megacephala (F.), was examined using light, scanning, and transmission electron microscopy. Salivary structures consist of a single median deferent duct that bifurcates into efferent ducts connected to paired, tubular salivary glands comprised of closely packed conical-shaped epithelial cells with large nuclei. The crop occurs as a large, swollen diverticulum of the digestive tube and is lined internally with convoluted cuticle (epicuticle and endocuticle). The esophagus is a simple, straight tube internally lined with cuticle and externally encompassed by muscle fibers. The cardia is a bulb-like structure composed of anterior foregut tissue and posterior midgut tissue from which the peritrophic membrane (PM) is produced. The midgut begins within the cardia which is flanked posteriorly by four tubular gastric caeca that are lined internally with four to five layers of cuboidal epithelial cells bearing microvilli. Midgut tissue is lined with simple cuboidal epithelium whose cells are filled with numerous secretory granules and possessed long microvilli facing the lumen. A peritrophic membrane is contained within the midgut lumen. The larval hindgut consists of the pylorus, Malpighian tubules, ileum, colon, rectum, and anus, posteriorly. The pylorus is characterized by a single layer of epithelial cells encircled by a muscular layer and the presence of PM within the lumen. Malpighian tubules each diverge into two tubular structures totalling four long tubules of long chained cuboidal cells bearing microvilli internally. The wall of the ileum is comprised primarily of a monolayer of cuboidal epithelial cells with large oval nuclei and more intense muscular fibers surrounding the periphery. A cuticular layer surrounds the lumen containing the PM. This inner cuticle consists of a thin epicuticle that is electron-dense; whereas, the endocuticle is much thicker but less electron-dense. Myo-epithelial cells are dense in the anal region, where the PM persists.
Surface ultrastructure of the puparia of the blow fly, Lucilia cuprina, and flesh fly, Liosarcophaga dux, are presented utilizing scanning electron microscopy (SEM). Emphasis was focused on characteristic features of the puparia that could be used for differentiation from other forensically important fly species. The puparium of L. cuprina typically measures 6.2+/-0.2 mm in length and 2.3+/-0.1 mm in width. Each anterior spiracle contains a single row of 5-7 papillae. The intersegmental spines between the prothorax and mesothorax are triangular with constricted tips. A clustered bubble membrane, comprising about 30 mammillate structures, is positioned dorsolaterally on each side of the first abdominal segment in young puparia but is replaced by short, tubular respiratory horns in aged puparia. The posterior end of the puparium is broadly truncate and bears a pair of medially positioned posterior spiracles that each contains three straight spiracular slits. The puparium of L. dux is larger in comparison to L. cuprina and typically measures 9.9+/-0.3 mm in length and 3.8+/-0.2 mm in width. An anterior spiracle of this species contains 14-17 papillae. The intersegmental spines between the prothorax and mesothorax are broad and triangular. A convoluted structure of unknown function was observed at the dorsolateral edge of segments 5-11. In L. dux, the caudal segment of the puparium is slightly tapered and abruptly truncated and contains a pair of posterior spiracles that are located within a deep concavity in the terminal end. Each posterior spiracular disc appears D-shaped, with a pronounced medial projection and three vertically oriented long, narrow spiracular slits. The anatomical features presented herein may be useful for identification of fly puparia of these two species in future forensic entomological investigations.
Observations on the ultrastructure of the third instar larva and puparium of the Old World screw-worm fly, Chrysomya bezziana, are presented utilizing both light microscopy (LM) and scanning electron microscopy (SEM). Results of this study indicate that the shape of the intersegmental spines between the pro- and mesothorax markedly differ from other blow fly species (Chrysomya megacephala, Chrysomya rufifacies, Chrysomya nigripes, Lucilia cuprina) in being broad-based with sharp recurved tips. Other characters such as the posterior spiracles, number of papillae on the anterior spiracles, oral grooves, and posterior spiracular hairs also differ. The strong and robust mouthhooks may explain the ability of larvae to penetrate deeply into human tissues. Perforated sieve plates covered with antler-like projections were observed within the anterior spiracles of the puparium of C. bezziana. The posterior spiracular discs each bear three spiracular slits with approximately 2-microm wide openings that were viewed either open or closed by a membrane underneath. This study expands our knowledge of the fine details of the external morphology of both the third instar larva and puparium of C. bezziana, which is an obligatory myiasis-producing species in many regions. A key to differentiate the third instar of C. bezziana from other blow flies in Thailand is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.