Gait is one of well recognized biometrics that has been widely used for human identification. However, the current gait recognition might have difficulties due to viewing angle being changed. This is because the viewing angle under which the gait signature database was generated may not be the same as the viewing angle when the probe data are obtained. This paper proposes a new multi-view gait recognition approach which tackles the problems mentioned above. Being different from other approaches of same category, this new method creates a so called View Transformation Model (VTM) based on spatial-domain Gait Energy Image (GEI) by adopting Singular Value Decomposition (SVD) technique. To further improve the performance of the proposed VTM, Linear Discriminant Analysis (LDA) is used to optimize the obtained GEI feature vectors. When implementing SVD there are a few practical problems such as large matrix size and over-fitting. In this paper, reduced SVD is introduced to alleviate the effects caused by these problems. Using the generated VTM, the viewing angles of gallery gait data and probe gait data can be transformed into the same direction. Thus, gait signatures can be measured without difficulties. The extensive experiments show that the proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods in literature.
Gait is a well recognized biometric feature that is used to identify a human at a distance. However, in real environment, appearance changes of individuals due to viewing angle changes cause many difficulties for gait recognition. This paper re-formulates this problem as a regression problem. A novel solution is proposed to create a View Transformation Model (VTM) from the different point of view using Support Vector Regression (SVR). To facilitate the process of regression, a new method is proposed to seek local Region of Interest (ROI) under one viewing angle for predicting the corresponding motion information under another viewing angle. Thus, the well constructed VTM is able to transfer gait information under one viewing angle into another viewing angle. This proposal can achieve viewindependent gait recognition. It normalizes gait features under various viewing angles into a common viewing angle before similarity measurement is carried out. The extensive experimental results based on widely adopted benchmark dataset demonstrate that the proposed algorithm can achieve significantly better performance than the existing methods in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.