Sesame is Ethiopia’s most significant oil crop, especially Tigray, Amhara, and some lowland Oromia, Somalia, and the Gambella region. Consequently, the crop is exposed to a wide range of insect pests feeding on leaves, flowers, pods, and seeds affecting sesame yields. This article review provides information on the biology, nature of the damage, and management methods of economically important sesame pests. Sesame webworm, Antigastra catalaunalis (Duponchel) is the most common and frequently encountered pre-harvest pest of sesame. Sesame seed bugs, Elasmolmus sordidus (Fabricus) is also the most serious under field and storage conditions. Gall fly, Asphondylia sesami (Felt) could become a severe insect issue because of sesame gall formation, and Indian meal moth, Plodia interpunctella (Hubner) is a critical stored pest and a significant challenging of crop sesame in Ethiopia. Reports on minor pests are also listed. This paper summarizes current knowledge on pest management strategies, including cultural, biological, and botanical methods, and pesticide applications. The information gathered here indicates that the bioecology, host range, host plant resistance, the occurrence of insecticide resistance, and the development of integrated pest management methods for economical insect pests need to be addressed.
Cotton varieties that are high yielding and resistant to pests are required to improve production and productivity and to capitalize on the crop’s enormous potential and its critical role in Ethiopia’s expanding textile industry. Lack of improved cotton technology has forced farmers to recycle local varieties for ages which have become very susceptible to pests which are the major causes of very low productivity and quality of cotton in the country. Among major pests, bollworms (Helicoverpa armigera and Pectinophora gossypiella) account for 36–60% of yield losses. In the absence of genetically resistant or tolerant varieties, genetically engineered bollworm-resistant Bacillus thuringiensis (Bt) cotton has offered a great opportunity to reduce crop losses from bollworms. The objective of the study was to evaluate the efficacy of bollworm resistance and adaptability of Bt cotton varieties across cotton growing environments in Ethiopia and provide recommendations. Two Bt cotton hybrids (JKCH 1947 and JKCH 1050), one Bt OPV (Sudan), and three OPV conventional varieties (Weyito 07, Stam-59A, and Deltapine-90) were evaluated at seven different agro-ecologies using a randomized complete block design (RCBD) with three replications. Results showed significant differences among genotypes for yield and other traits. Hybrids JKCH 1947 and JKCH 1050 were the top high yielders under high and mild bollworm infestations, with mean seed cotton yield of 3.10 t·ha−1 each and lint yield of 1.20 and 1.19 t·ha−1, respectively, whereas the standard check Deltapine-90 (popular variety) recorded a mean seed cotton and lint yield of 2.3 t·ha−1 and 0.8 t·ha−1, respectively. Combined analysis showed that genotypes, environment, and the genotypes × environment interactions had a highly significant effect ( P < 0.05) on fiber quality. Weyito 07 and the two hybrids (JKCH 1947 and JKCH 1050) had upper half mean fiber lengths in the range of 27.78 to 32.11 mm. For fiber strength, genotypes Weyito 07, JKCH 1050, Stam-59A, and JKCH 1947 had 33.50 g/tex, 28.59 g/tex, 28.00 g/tex, and 27.75 g/tex, respectively. The fiber quality values of the hybrids were within acceptable limits, with staple lengths ranging from 27.78 to 28.44 mm and fiber strengths ranging from 27.75 to 28.59 g/tex. Results show potential adaptation of the hybrids under different cotton growing environments and their superior yield performance due also to added protection of yield losses from damage by bollworms. The contrast is bigger under high insect pressure conditions due to the genetically engineered Bt trait compared to the conventional varieties. The effective field resistance against bollworms in most locations shows that wider use of these hybrids can enhance cotton productivity and quality in Ethiopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.