This paper deals with numerical treatment of singularly perturbed parabolic differential equations having large time delay. The highest order derivative term in the equation is multiplied by a perturbation parameter ε , taking arbitrary value in the interval 0 , 1 . For small values of ε , solution of the problem exhibits an exponential boundary layer on the right side of the spatial domain. The properties and bounds of the solution and its derivatives are discussed. The considered singularly perturbed time delay problem is solved using the Crank-Nicolson method in temporal discretization and exponentially fitted operator finite difference method in spatial discretization. The stability of the scheme is investigated and analysed using comparison principle and solution bound. The uniform convergence of the scheme is discussed and proven. The formulated scheme converges uniformly with linear order of convergence. The theoretical analysis of the scheme is validated by considering numerical test examples for different values of ε .
This paper deals with solution methods for singularly perturbed delay differential equations having delay on the convection and reaction terms. The considered problem exhibits an exponential boundary layer on the left or right side of the domain. The terms with the delay are treated using Taylor?s series approximation and the resulting singularly perturbed boundary value problem is solved using a specially designed exponentially finite difference method. The stability of the scheme is analysed and investigated using a comparison principle and solution bound. The formulated scheme converges uniformly with linear order of convergence. The theoretical findings are validated using three numerical test examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.