Isolated hypodontia is the most common human malformation. It is caused by heterozygous variants in various genes, with heterozygous WNT10A variants being the most common cause. WNT10A and WNT10B are paralogs that likely evolved from a common ancestral gene after its duplication. Recently, an association of WNT10B variants with oligodontia (severe tooth agenesis) has been reported. We performed mutational analysis in our cohort of 256 unrelated Thai families with various kinds of isolated dental anomalies. In 7 families afflicted with dental anomalies we detected 4 heterozygous missense variants in WNT10B. We performed whole exome sequencing in the patients who had WNT10B mutations and found no mutations in other known hypodontia-associated genes, including WNT10A, MSX1, PAX9, EDA, AXIN2, EDAR, EDARADD, LPR6, TFAP2B, LPR6, NEMO, KRT17, and GREM2. Our findings indicate that the variants c.475G>C [p.(Ala159Pro)], found in 4 families, and c.1052G>A [p.(Arg351His)], found in 1 family, are most probably causative. They also show that WNT10B variants are associated not only with oligodontia and isolated tooth agenesis, but also with microdontia, short tooth roots, dental pulp stones, and taurodontism.
Mandibular prognathism is characterized by a prognathic or prominent mandible. The objective of this study was to find the gene responsible for mandibular prognathism. Whole exome sequencing analysis of a Thai family (family 1) identified the ADAMTSL1 c.176C>A variant as the potential defect. We cross‐checked our exome data of 215 people for rare variants in ADAMTSL1 and found that the c.670C>G variant was associated with mandibular prognathism in families 2 and 4. Mutation analysis of ADAMTSL1 in 79 unrelated patients revealed the c.670C>G variant was also found in family 3. We hypothesize that mutations in ADAMTSL1 cause failure to cleave aggrecan in the condylar cartilage, and that leads to overgrowth of the mandible. Adamtsl1 is strongly expressed in the condensed mesenchymal cells of the mouse condyle, but not at the cartilage of the long bones. This explains why the patients with ADAMTSL1 mutations had abnormal mandibles but normal long bones. This is the first report that mutations in ADAMTSL1 are responsible for the pathogenesis of mandibular prognathism.
We report a Thai father (patient 1) and his daughter (patient 2) affected with osteogenesis imperfecta type IV and dentinogenesis imperfecta. Both were heterozygous for the c.1451G>A (p.Gly484Glu) mutation in COL1A2. The father, a Thai boxer, had very mild osteogenesis imperfecta with no history of low-trauma bone fractures. Scanning electron micrography of the primary teeth with DI of the patient 2, and the primary teeth with DI of another OI patient with OI showed newly recognized dental manifestations of teeth with DI. Normal dentin and cementum might have small areas of ectopic mineralizations. Teeth affected with DI have well-organized ectopic mineralizations in dentin and cementum. The "French-fries-appearance" of the crystals at the cemento-dentinal junction and abnormal cementum have never been reported to be associated with dentinogenesis imperfecta, either isolated or osteogenesis imperfecta-associated. Our study shows for the first time that abnormal collagen fibers can lead to ectopic mineralization in dentin and cementum and abnormal cementum can be a part of osteogenesis imperfecta.
Adult-onset immunodeficiency syndrome (AOID) with anti-interferon (IFN)γ autoantibodies is characterized by an AIDS-like illness with disruptive IFNγ signaling. Patients generally present with recurrent and disseminated opportunistic infections along with neutrophilic dermatoses. Generalized pustular psoriasis (GPP; Online Mendelian Inheritance in Man #614204) is characterized by acute generalized erythema and scaling with numerous aseptic pustules. Mutations in SERPINA3 have been reported as predisposing risk factors for both AOID and GPP. Here, we report two unrelated patients, one with AOID and a pustular skin reaction and the other with GPP, who both carried the same heterozygous variant c.718G>A (p.Val240Met) in SERPINA1. Our observation of a shared mutation in SERPINA1 in AOID and GPP indicate possible pathobiological and disease mechanism similarities in these two disorders. Thus, variants in both SERPINA1, SERPINA3, and potentially other SERPIN family members may be associated with the etiology of GPP and AOID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.