Dwell fatigue, the reduction in fatigue life experienced by titanium alloys due to holds at stresses as low as 60% of yield, has been implicated in several uncontained jet engine failures. Dislocation slip has long been observed to be an intermittent, scale-bridging phenomenon, similar to that seen in earthquakes but at the nanoscale, leading to the speculation that large stress bursts might promote the initial opening of a crack. Here we observe such stress bursts at the scale of individual grains in situ, using high energy X-ray diffraction microscopy in Ti–7Al–O alloys. This shows that the detrimental effect of precipitation of ordered Ti3Al is to increase the magnitude of rare pri〈a〉 and bas〈a〉 slip bursts associated with slip localisation. By contrast, the addition of trace O interstitials is beneficial, reducing the magnitude of slip bursts and promoting a higher frequency of smaller events. This is further evidence that the formation of long paths for easy basal plane slip localisation should be avoided when engineering titanium alloys against dwell fatigue.
Dwell fatigue, the reduction in fatigue life experienced by titanium alloys due to holds at stresses as low as 60% of yield, has been implicated in several uncontained jet engine failures. Dislocation slip has long been observed to be an intermittent, scalebridging phenomenon, similar to that seen in earthquakes but at the nanoscale, leading to the speculation that large stress bursts might promote the initial opening of a crack. Here we observe such stress bursts at the scale of individual grains in situ, using high energy X-ray diffraction microscopy and discrete dislocation plasticity modelling in Ti-7Al-O alloys. This shows that the detrimental effect of precipitation of ordered Ti 3 Al is to increase the magnitude of rare pri a and bas a slip bursts associated with slip localisation. By contrast, the addition of trace O interstitials is beneficial, reducing the magnitude of slip bursts and promoting a higher frequency of smaller events. This is further evidence that the formation of long paths for easy basal plane slip localisation should be avoided when engineering titanium alloys against dwell fatigue.
Increasing attention is being paid to α 2 Ti 3 (Al,Sn) precipitation from the α phase of titanium alloys owing to its effect on slip band formation, localisation and the implications for fatigue performance in jet engine titanium. However, the early stages of α 2 precipitation have historically been difficult to observe in TEM, neutron diffraction or atom probe analysis. Here, small angle X-ray scattering is used to reexamine the phase boundary in binary Ti-Al and Ti-Sn alloys with around 500 ppmw O. It is found that the phase boundaries in the literature are approximately correct, at 6.2 wt.% Al and 16.9 wt.% Sn, and that this favours the use of Al as a solid solution strengthener over Sn for ambient temperature applications. However, once O content and phase partitioning in α+β alloys are taken into account, this implies that Al eq limits for future alloy design of critical rotating parts should be lowered substantially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.