Background In brain tissues from multiple sclerosis (MS) patients, clusters of activated HLA-DR-expressing microglia, also referred to as preactive lesions, are located throughout the normal-appearing white matter. The aim of this study was to gain more insight into the frequency, distribution and cellular architecture of preactive lesions using a large cohort of well-characterized MS brain samples. Methods Here, we document the frequency of preactive lesions and their association with distinct white matter lesions in a cohort of 21 MS patients. Immunohistochemistry was used to gain further insight into the cellular and molecular composition of preactive lesions. Results Preactive lesions were observed in a majority of MS patients (67%) irrespective of disease duration, gender or subtype of disease. Microglial clusters were predominantly observed in the vicinity of active demyelinating lesions and are not associated with T cell infiltrates, axonal alterations, activated astrocytes or blood–brain barrier disruption. Microglia in preactive lesions consistently express interleukin-10 and TNF-α, but not interleukin-4, whereas matrix metalloproteases-2 and −9 are virtually absent in microglial nodules. Interestingly, key subunits of the free-radical-generating enzyme NADPH oxidase-2 were abundantly expressed in microglial clusters. Conclusions The high frequency of preactive lesions suggests that it is unlikely that most of them will progress into full-blown demyelinating lesions. Preactive lesions are not associated with blood–brain barrier disruption, suggesting that an intrinsic trigger of innate immune activation, rather than extrinsic factors crossing a damaged blood–brain barrier, induces the formation of clusters of activated microglia.
Similar to macrophages, microglia adopt diverse activation states and contribute to repair and tissue damage in multiple sclerosis. Using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, we show that in vitro M1-polarized (proinflammatory) human adult microglia express the distinctive markers CD74, CD40, CD86, and CCR7, whereas M2 (anti-inflammatory) microglia express mannose receptor and the anti-inflammatory cytokine CCL22. The expression of these markers was assessed in clusters of activated microglia in normal-appearing white matter (preactive lesions) and areas of remyelination, representing reparative multiple sclerosis lesions. We show that activated microglia in preactive and remyelinating lesions express CD74, CD40, CD86, and the M2 markers CCL22 and CD209, but not mannose receptor. To examine whether this intermediate microglia profile is static or dynamic and thus susceptible to changes in the microenvironment, we polarized microglia into M1 or M2 phenotype in vitro and then subsequently treated them with the opposing polarization regimen. These studies revealed that expression of CD40, CXCL10, and mannose receptor is dynamic and that microglia, like macrophages, can switch between M1 and M2 phenotypic profiles. Taken together, our data define the differential activation states of microglia during lesion development in multiple sclerosis-affected CNS tissues and underscore the plasticity of human adult microglia in vitro.
There is growing evidence that mitochondrial dysfunction and associated reactive oxygen species (ROS) formation contribute to neurodegenerative processes in multiple sclerosis (MS). Here, we investigated whether alterations in transcriptional regulators of key mitochondrial proteins underlie mitochondrial dysfunction in MS cortex and contribute to neuronal loss. Hereto, we analyzed the expression of mitochondrial transcriptional (co-)factors and proteins involved in mitochondrial redox balance regulation in normal-appearing grey matter (NAGM) samples of cingulate gyrus and/or frontal cortex from 15 MS patients and nine controls matched for age, gender and post-mortem interval. PGC-1α, a transcriptional co-activator and master regulator of mitochondrial function, was consistently and significantly decreased in pyramidal neurons in the deeper layers of MS cortex. Reduced PGC-1α levels coincided with reduced expression of oxidative phosphorylation subunits and a decrease in gene and protein expression of various mitochondrial antioxidants and uncoupling proteins (UCPs) 4 and 5. Short-hairpin RNA-mediated silencing of PGC-1α in a neuronal cell line confirmed that reduced levels of PGC-1α resulted in a decrease in transcription of OxPhos subunits, mitochondrial antioxidants and UCPs. Moreover, PGC-1α silencing resulted in a decreased mitochondrial membrane potential, increased ROS formation and enhanced susceptibility to ROS-induced cell death. Importantly, we found extensive neuronal loss in NAGM from cingulate gyrus and frontal cortex of MS patients, which significantly correlated with the extent of PGC-1α decrease. Taken together, our data indicate that reduced neuronal PGC-1α expression in MS cortex partly underlies mitochondrial dysfunction in MS grey matter and thereby contributes to neurodegeneration in MS cortex.
Experimental autoimmune encephalomyelitis (EAE) is a spectrum of neurological disorders in laboratory animals that is used to model multiple sclerosis (MS). However, few agents have translated from efficacy in EAE to the treatment of human disease. Although this may reflect species differences in pathological disease mechanisms, importantly it may also relate to the practice of how drugs and models are currently used. This often bears very little resemblance to the clinical scenarios where treatments are investigated, such that lack of appreciation of the biology of disease may doom drugs to failure. The use of EAE is critically appraised with the aim of provoking thought, improving laboratory practise and aiding researchers and reviewers to address quality issues when undertaking, reporting and interpreting animal studies related to MS research. This is important as many researchers using EAE could and should do more to improve the quality of the studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.