Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500nM) induced a decrease in dopamine efflux at low frequency (single pulse or 5 pulses at 10Hz) and an increase at high frequency (100Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.
The present study focused on the evaluation of behavioral sensitization and cross-sensitization induced by nicotine and varenicline in rats. Furthermore, it examined the influence of varenicline, a partial alpha4beta2 nicotinic receptor agonist, on nicotine-induced sensitization. To assess the development of behavioral sensitization, rats were chronically treated with vehicle, varenicline (0.03-3.0 mg/kg), nicotine (0.4 mg/kg) or combinations for 5 days and locomotor activity was measured. The expression of sensitization was assessed following a withdrawal period (17-26 days). The present results confirmed previous data showing the development and expression of nicotine-induced sensitization of locomotor activity in the rat. Varenicline did not induce sensitization on its own. When varenicline and nicotine were repeatedly administered sequentially, varenicline blocked the development and expression of nicotine-induced sensitization. Acute varenicline blocked the expression of nicotine-induced sensitization in a dose-dependent manner. Acute varenicline did not significantly increase locomotor activity, nor did it attenuate nicotine-induced sensitization. However, varenicline did cross-sensitize to the effects of nicotine, and vice versa. The present study showed that varenicline produced a dose-dependent bidirectional cross-sensitization with nicotine. Taken together, these findings provide pre-clinical evidence that varenicline is able to attenuate the effects of nicotine, yet simultaneously 'substitutes' for the effects of nicotine in the rat. Longitudinal studies would be needed to see if similar effects are seen in the clinical setting, and whether such effects contribute to the actions of varenicline as a smoking cessation aid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.