Mitrates are a controversial group of extinct deuterostomes; there is little agreement over their affinities, functional morphology or even the orientation of their upper and lower surfaces. Four slabs of slate from the Lower Devonian Hunsrück Slate (Bundenbach, Germany) are here described, showing trace fossils (Vadichnites transversus igen. et isp. nov.) associated with the mitrate Rhenocystis latipedunculata. These new findings clearly demonstrate that the mitrate appendage was used in locomotion and that this movement took place appendage-first. Such a functional interpretation suggests that mitrates were oriented with the flat body surface upwards in life and argues against a phylogenetic position in the echinoderm crown-group.
Nineteen partial specimens of Conularia sp., together with an articulated agelacrinitid edrioasteroid and several discinid brachiopods, occur in close association with a probable biological substrate on a small slab of silty Hunsrück Slate (Lower Devonian, Emsian) from Bundenbach, Germany. Most of the conulariids occur in V-like pairs or in a single cluster of 12 specimens arranged in a fan-like radial pattern. Together with the edrioasteroid and (possibly) brachiopods, the conulariids probably were attached to the substrate in life and then were buried and possibly killed by a single influx of silty mud. The apertural end of many of the conulariids is partially covered by inwardly folded short lappets, which may have closed in response to rapid (but gentle) burial. Rock matrix in the apertural region of the peridermal cavity of nearly all of the conulariids exhibits irregular, variably dense concentrations of pyrite. The concentrations occur almost exclusively within the conulariids, where they probably formed as a result of the decay of retracted conulariid soft parts. Although the concentrations lack clearly defined anatomical features that can be unambiguously homologized with particular anatomical structures of any extant taxon, their form and distribution within the conulariids are consistent with the hypothesis that conulariids were polypoid scyphozoans.
Trilobites, extinct arthropods that dominated the faunas of the Palaeozoic, since their appearance c 523 million years ago, were equipped with elaborate compound eyes. While most of them possessed apposition compound eyes (in trilobites called holochroal eyes), comparable to the compound eyes of many diurnal crustaceans and insects living today, trilobites of the suborder Phacopina developed atypical large eyes with wide lenses and wide interspaces in between (schizochroal eyes). Here, we show that these compound eyes are highly sophisticated systems—hyper-compound eyes hiding an individual compound eye below each of the big lenses. Thus, each of the phacopid compound eyes comprises several tens, in cases even hundreds of small compound eye systems composing a single visual surface. We discuss their development, phylogenetic position of this hyper-compound eye, and its neuronal infrastructure. A hyper-compound eye in this form is unique in the animal realm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.