We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q of the hard interaction, factorization does not yield standard parton distribution functions (PDFs) for the initial state. The measurement restricting the hadronic final state introduces a new scale µB ≪ Q and probes the proton prior to the hard collision. This corresponds to evaluating the PDFs at the scale µB. After the proton is probed, the incoming hard parton is contained in an initialstate jet, and the hard collision occurs between partons inside these jets rather than inside protons. The proper description of such initial-state jets requires "beam functions". At the scale µB, the beam function factorizes into a convolution of calculable Wilson coefficients and PDFs. Below µB, the initial-state evolution is described by the usual PDF evolution which changes x, while above µB it is governed by a different renormalization group evolution that sums double logarithms of µB/Q and leaves x fixed. As an example, we prove a factorization theorem for "isolated Drell-Yan", pp → Xℓ + ℓ − where X is restricted to have no central jets. We comment on the extension to cases where the hadronic final state contains a certain number of isolated central jets.
Jet vetoes are essential in many analyses at the LHC and Tevatron. Typical signals have a specific number of hard jets or leptons, while backgrounds have additional jets. Vetoing undesired jets efficiently discriminates signal and background. For a sample with ≥N jets, the veto to give N energetic jets defines an "exclusive" N-jet cross section. This strongly restricts the phase space and causes large double logarithms in perturbation theory that must be summed. Jet vetoes are typically implemented using jet algorithms, yielding complicated phase-space restrictions, and reliance on leading-log parton-shower Monte Carlo simulations. We introduce a global event shape "N jettiness" τN, which is defined for events with N signal jets. Requiring τN≪1 constrains radiation between the signal jets and provides a theoretically well-controlled jet veto. N jettiness yields a factorization formula with inclusive jet and beam functions.
In hard collisions at a hadron collider the most appropriate description of the initial state depends on what is measured in the final state. Parton distribution functions (PDFs) evolved to the hard collision scale Q are appropriate for inclusive observables, but not for measurements with a specific number of hard jets, leptons, and photons. Here the incoming protons are probed and lose their identity to an incoming jet at a scale µ B ≪ Q, and the initial state is described by universal beam functions. We discuss the field-theoretic treatment of beam functions, and show that the beam function has the same RG evolution as the jet function to all orders in perturbation theory. In contrast to PDF evolution, the beam function evolution does not mix quarks and gluons and changes the virtuality of the colliding parton at fixed momentum fraction. At µ B , the incoming jet can be described perturbatively, and we give a detailed derivation of the one-loop matching of the quark beam function onto quark and gluon PDFs. We compute the associated NLO Wilson coefficients and explicitly verify the cancellation of IR singularities. As an application, we give an expression for the next-to-next-to-leading logarithmic order (NNLL) resummed Drell-Yan beam thrust cross section.
Using methods of effective field theory, we derive the first all-order factorization theorem for the Higgs-boson production cross section with a jet veto, imposed by means of a standard sequential recombination jet algorithm. Like in the case of small-q T resummation in Drell-Yan and Higgs production, the factorization is affected by a collinear anomaly. Our analysis provides the basis for a systematic resummation of large logarithms ln(m H /p veto T) beyond leading-logarithmic order. Specifically, we present predictions for the resummed jet-veto cross section and efficiency at next-to-next-to-leading logarithmic order. Our results have important implications for Higgs-boson searches at the LHC, where a jet veto is required to suppress background events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.