BackgroundClostridium acetobutylicum represents a paradigm chassis for the industrial production of the biofuel biobutanol and a focus for metabolic engineering. We have previously developed procedures for the creation of in-frame, marker-less deletion mutants in the pathogen Clostridium difficile based on the use of pyrE and codA genes as counter selection markers. In the current study we sought to test their suitability for use in C. acetobutylicum.ResultsBoth systems readily allowed the isolation of in-frame deletions of the C. acetobutylicum ATCC 824 spo0A and the cac824I genes, leading to a sporulation minus phenotype and improved transformation, respectively. The pyrE-based system was additionally used to inactivate a putative glycogen synthase (CA_C2239, glgA) and the pSOL1 amylase gene (CA_P0168, amyP), leading to lack of production of granulose and amylase, respectively. Their isolation provided the opportunity to make use of one of the key pyrE system advantages, the ability to rapidly complement mutations at appropriate gene dosages in the genome. In both cases, their phenotypes were restored in terms of production of granulose (glgA) and amylase (amyP). Genome re-sequencing of the ATCC 824 COSMIC consortium laboratory strain used revealed the presence of 177 SNVs and 49 Indels, including a 4916-bp deletion in the pSOL1 megaplasmid. A total of 175 SNVs and 48 Indels were subsequently shown to be present in an 824 strain re-acquired (Nov 2011) from the ATCC and are, therefore, most likely errors in the published genome sequence, NC_003030 (chromosome) and NC_001988 (pSOL1).ConclusionsThe codA or pyrE counter selection markers appear equally effective in isolating deletion mutants, but there is considerable merit in using a pyrE mutant as the host as, through the use of ACE (Allele-Coupled Exchange) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Our study also revealed a surprising number of errors in the ATCC 824 genome sequence, while at the same time emphasising the need to re-sequence commonly used laboratory strains.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0410-0) contains supplementary material, which is available to authorized users.
Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.