Four hydrophobic amino acids (Leu, Tyr, Phe, Trp) were oligomerized by the protease papain in homo-oligomerization, binary co-oligomerization and ternary co-oligomerization. After 24 h, solid polydisperse reaction products of the homo-oligomerization were obtained in yields ranging from 30-80% by weight. A DP avg was calculated based on MALDI-ToF MS results using the ion counts for the chains in the product. Based on the DP avg and the yield of the homo-oligomerization it was determined that the amino acids can be ranked according to reactivity in the order: Tyr > Leu > Phe > Trp. Thermal degradation of the homo-oligomers shows two degradation steps: at 178-239 °C and at 300-330 °C. All the products left a significant amount of char ranging from 18-57% by weight at 800 °C. Binary co-oligomers were obtained as a polydisperse precipitate with a compositional distribution of the chains. Both the compositional and chain length distribution are calculated from MALDI-ToF mass spectra. By comparing the amount of each amino acid present in the chains it was determined that the amino acids are incorporated with a preference: Leu > Tyr > Phe > Trp. Ternary co-oligomers were also obtained as a precipitate and analyzed by MALDI-ToF MS. The compositional distribution and the chain length distribution were calculated from the MALDI-ToF data. The quantity of every amino acid in the chains was determined. Also determined was the influence on the DP avg when the oligomers were compared with corresponding binary co-oligomers. From the combined results it was concluded that in the co-oligomerization of three amino acids the reactivity preference is Leu > Tyr > Phe > Trp. OPEN ACCESSPolymers 2012, 4 711Thermal degradation of all the co-oligomers showed a weight loss of 2 wt% before the main oligomer degradation step at 300-325 °C.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Novel 2-(β-maltooligooxy)-ethyl (meth)acrylate monomers are successfully synthesized by CGTase from Bacillus macerans catalyzed coupling of 2-(β-glucosyloxy)-ethyl acrylate and methacrylate with α-cyclodextrin or starch. HPLC-UV analysis shows that the CGTase catalyzed reaction yields 2-(β-maltooligooxy)-ethyl acrylates with 1 to 15 glucopyranosyl units. (1) H NMR spectroscopy reveals that the β-linkage in the acceptor molecule is preserved during the CGTase catalyzed coupling reaction, whereas the newly introduced glucose units are attached by α-(1,4)-glycosidic linkages. The synthesized 2-(β-maltooligooxy)-ethyl acrylate monomers are successfully polymerized by aqueous free radical polymerization to yield the comb-shaped glycopolymer poly(2-(β-maltooligooxy)-ethyl acrylate).
Various cellulase preparations were found to catalyze the transglycosidation between cotton linters and 2-hydroxyethyl acrylate. The conversion and enzyme activity were found to be optimal in reaction mixtures that contained 5 vol % of the acrylate. The structures of the products were revealed by using TLC and (1) H and (13) C NMR spectroscopy. The enzyme-catalyzed reaction resulted in two products. The minor product originated from transglycosidation to hemicellulose and was found to be 2-(β-xylosyloxy)-ethyl acrylate. The major product was identified as 2-(β-glucosyloxy)-ethyl acrylate and the yield of the product was 5 wt % based on the amount of consumed cellulose. Glycosidation products with oligosaccharide moieties could not be detected in the reaction mixture. This result can be explained by the hydrolytic activities of the used cellulase preparation. Cellulase from Trichoderma reesei was found to possess, in addition to endoglucanase activity, cellobiosidase and β-glucosidase activities. Five other cellulase preparations from different origins were tested as well for catalysis of oligosaccharide acrylate synthesis. For most cellulase preparations the major transglycosidation product appeared to be 2-(β-glucosyloxy)-ethyl acrylate. Nevertheless, the endo-β-(1,4)-glucanase from Trichoderma longibrachiatum was found to catalyze the synthesis of 2-(β-cellobiosyloxy)-ethyl acrylate. Unlike the other cellulase preparations, endo-β-(1,4)-glucanase from T. longibrachiatum showed no detectable β-glucosidase activity and therefore oligosaccharide acrylate monomers were not further hydrolyzed into the monosaccharide acrylate 2-(β-glucosyloxy)-ethyl acrylate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.