The flash-photolysis time-resolved microwave conductivity technique (FP-TRMC) has been used to investigate the nature of the relaxed S(1) state of 9,9'-bianthryl (AA), 10-cyano-9,9'-bianthryl (CAA), and 10,10'-dicyano-9,9'-bianthryl (CAAC). Changes in both the real, Deltaepsilon' (dielectric constant), and imaginary, Deltaepsilon' ' (dielectric loss), components of the complex permittivity have been measured. The dielectric loss transients conclusively demonstrate the dipolar nature of S(1) for all three compounds in the pseudopolar solvents benzene and 1,4-dioxane, and even in the nonpolar solvents n-hexane and cyclohexane. The required symmetry breaking is considered to result from density and structural fluctuations in the solvent environment. The dipole relaxation times for AA (CAAC) are ca. 2 ps for the alkanes and 7.9 (5.3) and 14 (14) ps for benzene and dioxane, respectively. The time scale of dipole relaxation for the symmetrical compounds is much shorter than that for rotational diffusion and is attributed to intramolecular, flip-flop dipole reversal via a neutral excitonic state. The dipole moment of the transient dipolar state is estimated to be ca. 8 D, that is much lower than the value of ca. 20 D determined from the solvatochromic shifts in the fluorescence in intermediate to highly polar solvents which corresponds to close to complete charge separation. For the asymmetric compound, CAA, a dipole moment close to 20 D is found in all solvents, including n-hexane. Dipole relaxation in this case occurs on a time scale of several hundred picoseconds and is controlled mainly by diffusional rotation of the molecules. The mechanism and kinetics of formation of the dipolar excited states are discussed in the light of these results.
The potential of dimethylsilylene and isopropylidene σ-spacers as bridges for photoinduced charge transfer (CT) in 4-cyano-4′-(dimethylamino)-and 4-cyano-4′-methoxy-substituted diphenyldimethylsilanes and 2,2-diphenylpropanes was studied. Fluorescence solvatochromism and time-resolved microwave conductivity measurements show that upon photoexcitation a charge separated state (D •+ σA •-)* is populated in all compounds. Excited state dipole moments for a given donor-acceptor combination are, irrespective of the bridge, equal. The CT states of the silanes are however lying at lower energies, implying that the presence of silicon thermodynamically facilitates the CT process. Cyclic voltammetry data of model compounds show that this is a consequence of the lowering of the acceptor reduction potential by the silicon bridge. It was however inferred from radiative decay rates that the electronic coupling between the CT and locally excited states as well as the coupling between the ground and CT state is larger for the carbon-bridged compounds. As shown by both solution and solid state electronic spectra and radiative decay rates, the photophysics of the DσA compounds are dominated by intensity borrowing of the CT transitions from transitions localized in the Dσ and σA chromophores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.