In this paper, we propose and compare various techniques for the estimation of clean spectral envelopes in noisy conditions. The source-filter model of human speech production is employed in combination with a hidden Markov model and/or a deep neural network approach to estimate clean envelope-representing coefficients in the cepstral domain. The cepstral estimators for speech spectral envelope-based noise reduction are both evaluated alone and also in combination with the recently introduced cepstral excitation manipulation (CEM) technique for a priori SNR estimation in a noise reduction framework. Relative to the classical MMSE short time spectral amplitude estimator, we obtain more than 2 dB higher noise attenuation, and relative to our recent CEM technique still 0.5 dB more, in both cases maintaining the quality of the speech component and obtaining considerable SNR improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.