During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.
Although actuarial data indicate that risk-taking behavior peaks in adolescence, laboratory evidence for this developmental spike remains scarce. One possible explanation for this incongruity is that in the real world adolescents often have only vague information about the potential consequences of their behavior and the likelihoods of those consequences, whereas in the lab these are often clearly stated. How do adolescents behave under such more realistic conditions of ambiguity and uncertainty? We asked 105 participants aged from 8 to 22 years to make three types of choices: (1) choices between options whose possible outcomes and probabilities were fully described (choices under risk); (2) choices between options whose possible outcomes were described but whose probability information was incomplete (choices under ambiguity), and (3) choices between unknown options whose possible outcomes and probabilities could be explored (choices under uncertainty). Relative to children and adults, two adolescent-specific markers emerged. First, adolescents were more accepting of ambiguity; second, they were also more accepting of uncertainty (as indicated by shorter pre-decisional search). Furthermore, this tolerance of the unknown was associated with motivational, but not cognitive, factors. These findings offer novel insights into the psychology of adolescent risk taking.
Fairness is a key concept in social interactions and is influenced by intentionality considerations. In this functional magnetic resonance imaging study, we investigated the neural correlates of fairness by focusing on responder behavior to unfair offers in an Ultimatum Game paradigm with conditions that differed in their intentionality constraints. Brain activity underlying rejection vs acceptance of unfair offers appeared highly dependent on intentionality. Rejection of unfair offers when the proposer had no-alternative as well as acceptance of offers when the proposer had a fair- or hyperfair-alternative was associated with activation in a network of regions including the insula and the dorsal medial prefrontal cortex. These activations were interpreted as neural responses to norm violations because they were mostly involved when behavior was inconsistent with socially accepted behavior patterns. Rejection of unfair offers in the no-alternative condition further resulted in activity in the anterior medial prefrontal cortex and the temporoparietal junction, which was interpreted in terms of higher moral mentalizing demands required in social decision-making when rejection could not be readily justified. Together, results highlight the significance of intentionality considerations in fairness-related social decision-making processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.