Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.
Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.
Gelsolin amyloidosis is a dominantly inherited, incurable type of amyloidosis. A single point mutation in the gelsolin gene (G654A is most common) results in the loss of a Ca2+ binding site in the second gelsolin domain. Consequently, this domain partly unfolds and exposes an otherwise buried furin cleavage site at the surface. During secretion of mutant plasma gelsolin consecutive cleavage by furin and MT1-MMP results in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies that are able to (partly) inhibit furin or MT1-MMP proteolysis have previously been reported. In this study, the nanobodies have been combined into a single bispecific format able to simultaneously shield mutant plasma gelsolin from intracellular furin and extracellular MT1-MMP activity. We report the successful in vivo expression of this bispecific nanobody following adeno-associated virus serotype 9 gene therapy in gelsolin amyloidosis mice. Using SPECT/CT and immunohistochemistry, a reduction in gelsolin amyloid burden was detected which translated into improved muscle contractile properties. We conclude that a nanobody-based gene therapy using adeno-associated viruses shows great potential as a novel strategy in gelsolin amyloidosis and potentially other amyloid diseases.
These findings demonstrate the potential of this nanobody as a non-invasive tool to image amyloidogenic gelsolin deposition and assess the therapeutic capacity of AGel therapeutics currently under development. We propose that this approach can be extended to other amyloid diseases, thereby contributing to the development of specific therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.