When bacteria attach to the walls of pipelines, they can form biofilms, which can cause the recontamination of food products. In order to quantify such recontamination, a one-dimensional biofilm model was developed taking into account adsorption, desorption, and the growth of cells. The model consisted of two mass balances describing increases in biofilm formation at the wall and the accumulation of cells in the liquid phase. The necessary parameters for the model were obtained in laboratory biofilm experiments. These experiments involved a flowing system and the use of Staphylococcus aureus as a model pathogen and silicon tubing as a testing material. S. aureus was inoculated into the system for 2 h, and then the system was changed to a sterile medium. Both biofilm formation and the release of cells into the flowing liquid were measured until steady-state conditions were reached (for up to 9 days). The experiments were performed in duplicate for different flow conditions (i.e., for Reynolds numbers of 3.2, 32, and 170). It was shown that at higher Reynolds numbers, the biofilm developed faster, probably owing to an increase in the transfer of nutrients to the surface. The proposed biofilm model was capable of describing the data obtained for the three different flow conditions with the use of the specific growth rate in the biofilm and the desorption coefficient as fit parameters. The specific growth rates were 0.16, 0.27, and 0.49 h−1 for Reynolds numbers of 3.2, 32, and 170, respectively, and the desorption coefficients were about 1% of these values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.