Currently used soil salinity models do not contain a mechanism for including exchangeable sodium effects on soil pH. A method is needed that allows pH calculation from the sodium adsorption ratio (SAR) or exchangeable sodium percentage (ESP) and electrical conductivity (EC) data. This study developed a simple method for calculating saturated soil paste and aqueous solution pH from SAR (or ESP) and EC data and compared the results with measured values from a number of soils and subsurface waters. The equation pH -A+{B*(SAR) 1/2 /(1+CEC)I estimated soil pH from EC and SAR or ESP values. When rewritten as: SAR or ESP = l(pH-A)(1+C'EC)/13} 2 , the SAR or ESP was estimated from pH and EC data. By using shallow bore (well) water and soil extract data from the Murray Basin, values were determined for the scalar terms A, B and C. These values differed among subsurface water and soil types, however, the range of each scalar was reasonably small. It was found that a range of at least 2 . 5 pH units in the calibration data was necessary to obtain reliable regression between predicted and measured pH and SAR or ESP values. When these conditions were met, the predicted results were satisfactory. These relationships provide a method for pH calculation in soil salinity models which takes into account soil EC and sodium effects. They also provide a rapid field method to estimate SAR or ESP from easily obtainable EC and pH data. Further research is needed to define the factors that determine the values of A, B and C.
Two watering treatments (flood and control) were applied to undisturbed (bulk density �? 1.6 mg mm-3 ) and repacked �? 1.2 mg mm-3 ) cylinders of Marah clay loam. The cylinders (0.75 m o.d. by 1.4 m deep) were housed in a lysimeter facility. Wheat (cv. Egret) was grown in the cylinders and the soil was either kept well watered with frequent small amounts of water (control treatment) or subjected to three separate periods, ranging from 4 to 72 h, of surface inundation (flood treatment). The greater pore space and better drainage of the repacked soil ensured that its average level of soil oxygen (O2) was about three times that of the undisturbed soil. Nevertheless, inundation of the soil surface for either 48 or 72 h rapidly decreased soil O2 levels in both soils. Root growth in these soils appeared to be slowed when soil O2 levels became less than 15% of the maximum that would occur in dry, aerated soil. Root growth ceased in both repacked and undisturbed soil cores after a 48-h flooding, when the soil O2 status was probably < 10% of the maximum. Root growth was greatest in the repacked soil with controlled water additions. The ranking of treatments, by either root intercept counts or O2 status, were the same. Leaf and stem growth were not very sensitive to the root zone conditions, but this may have been due to the advanced stage of plant growth when the treatments were applied and to the generally low nitrogen status of all treatment plants. There was a 44% reduction in yield from the best to the worst aerated soil treatment. The data show that if soil O2 levels become low as the result of flooding, root growth of wheat will stop and grain yield will be substantially decreased. Greatly improved aeration of these fine-textured soils is only possible if both the internal drainage properties of the soil are improved and prolonged periods of surface inundation are avoided.
Transient waterlogging associated with spring irrigations on slowly draining soils causes yield reduction in irrigated wheat. Physiological responses to short-term flooding are not well understood. The aim of this experiment was to monitor above- and below-ground responses of wheat to single waterlogging events during and after stem elongation and to assess the sensitivity of the crop at these growth stages to flooding. Wheat (cv. Bindawarra) was grown in drainage lysimeters of undisturbed cores of Marah clay loam soil. A control treatment (F0) was well-watered throughout the season without surface flooding, while three others were flooded for 96 h at stem elongation (Fl), flag leaf emergence (F2) and anthesis (F3), respectively. Soil water content, soil O2, root length density, leaf and stem growth, apparent photosynthesis (APS), plant nutrient status and grain yield were measured. Soil water content increased and soil O2 levels decreased following flooding; the rate of soil O2 depletion increasing with crop age and root length. Leaf and stem growth and APS increased immediately following flooding, the magnitude of the increases was in the order F1 >F2>F3. A similar order existed in the effect of flooding which decreased the number of roots. Subsequently, leaf and stem growth decreased below that of F0 plants in F1, and briefly in F2. Decreases in APS of treated plants compared to F0 plants appeared to be due to their greater sensitivity to soil water deficit. There was no effect of flooding on grain yield. It is suggested that, while plant sensitivity to flooding decreased with age, flooding at stem elongation had no lasting detrimental effect on yield when post-flood watering was well controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.