Ca(2+)-activated and Ca(2+)-independent protein kinase Cs (PKCs) are present in the nervous system of the marine mollusk Aplysia californica (Kruger et al., 1991). Sensitizing stimuli or application of the facilitatory transmitter 5-HT to intact isolated ganglia produces the presynaptic facilitation of sensory-to-motor neuron synapses that underlies behavioral sensitization, which is a simple form of learning. Activation of PKC can also produce this presynaptic facilitation (Braha et al., 1990). To determine which type of PKC is activated, we developed a sensitive and selective assay to measure both Ca(2+)-activated and Ca(2+)-independent PKC activities in crude supernatant and membrane fractions of nervous tissue. This assay is based on the specific binding of the Ca(2+)-activated PKCs to phosphatidylserine vesicles in the presence of Ca2+ and makes use of a novel synthetic peptide with sequences conforming to phylogenetically conserved pseudosubstrate regions of the Ca(2+)-independent kinases. We provide evidence that the presynaptic facilitation is produced by a Ca(2+)-activated isoform: application of 5-HT increases the amount of the Ca(2+)-activated PKC activity associated with the membrane. Under these conditions, no increase in Ca(2+)-independent kinase activity is seen.
We examined the effects of 3 neuropeptides and the bioactive amine 5-HT on identified motoneurons (B15 and B16) and interneurons (B4, B5) involved in the control of feeding behavior in Aplysia californica. The application of egg-laying hormone (ELH), small cardioactive peptide b (SCPb), and 5-HT elicits distinct patterns of synaptically induced bursting in the neurons, while PheMetArgPheamide (FMRFamide) inhibits firing due to synaptic activity. Repetitive IPSPs recorded in B15 and B16 are induced by 5-HT and SCPb and inhibited by FMRFamide. The substances also may act directly: In solutions that block synaptic transmission SCPb excites B15, ELH excites B16, 5-HT excites B15, B16, and B4, and FMRFamide both inhibits B15 and B16 and excites B4. We suggest that the output of a buccal ganglion central pattern generator may be modulated to produce distinct patterns of motoneuron activity by these candidate transmitters. We also noted differences in the intrinsic properties of the 2 motoneurons. B15 contains SCPb immunoreactivity while B16 does not. This finding suggests that B15 may be the source for the SCPb immunoreactivity previously found at the ARC muscle and that SCPb may be acting in an autocrine mode. Also, B15 has a significantly lower resting potential than B16 and contains a large transient outward (Ia-like) current. The candidate transmitters act by exciting or inhibiting elements at every level within the hierarchically organized motor system that controls feeding. This expands the diversity of behavioral repertoires that may be elicited from a particular neural circuit.
We isolated cDNA clones from an Aplysia sensory-cell library encoding two isoforms of protein kinase C (PKC). Several isozyme-specific regions are conserved in the Aplysia kinases, notably the variable regions V5 in the Ca(2+)-dependent PKC (Apl I) and V1 in the Ca(2+)- independent PKC (Apl II). Neuronal proteins with the properties expected of these two isoforms can be identified with antibodies raised against peptides synthesized from the amino acid sequences deduced from the clones. Sacktor and Schwartz (1990) measured the proportion of kinase activity that can be translocated to membrane in Aplysia sensory neurons and ganglia by stimuli that produce the presynaptic facilitation underlying behavioral sensitization. Much less Apl I and Apl II are translocated, suggesting that still other isoforms of PKC exist in these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.