Actin gene of Trypanosoma evansi (STIB 806) was cloned and expressed in Escherichia coli. The predicted amino acid sequence of T. evansi actin shows 100%, 98.7%, and 93.1%, homology with Trypanosoma equiperdum, Trypanosoma brucei brucei, and Trypanosoma cruzi. Recombinant actin was expressed as inclusion bodies in E. coli. It was purified and renatured for immunological studies. Mice immunized with the renatured recombinant actin were protected from lethal challenge with T. evansi STIB 806, T. equiperdum STIB 818, and T. b. brucei STIB 940, showing 63.3%, 56.7%, and 53.3% protection, respectively. Serum collected from the rabbit immunized with recombinant actin inhibited the growth of T. evansi, T. equiperdum, and T. b. brucei in vitro cultivation. Serum from mice and rabbits immunized with recombinant actin only recognized T. evansi actin but not mouse actin. The results of this study suggest that the recombinant T. evansi actin induces protective immunity against T. evansi, T. equiperdum, and T. b. brucei infection and may be useful in the development of a vaccine with other cytoskeletal proteins to prevent animal trypanosomiasis caused by these three trypanosome species.
Free fatty acids (FFA) have been implicated as an important causative link between obesity, insulin resistance, and Type 2 diabetes. However, the underlying mechanisms especially for FFA-mediated hepatic insulin resistance are not fully elucidated. Here, we investigated the impaired sites in insulin signaling pathways and mechanisms of insulin resistance induced by elevated FFA in L02 hepatocytes. L02 cells were cultured in Dulbecco's modified eagle medium containing various concentrations of palmitic acid (PA) for 24 h followed by 10(-7) mol/l insulin stimulation. In some experiments, cells were pre-treated with enzymatic inhibitor Wortmannin (10(-6) mol/l). Glucose levels in medium, cytosolic glycogen contents, and phosphoenolpyruvate carboxykinase (PEPCK) activity were measured. Protein level of insulin receptor substrate (IRS)-2 and phosphorylated Akt were detected by Western blot analysis. L02 cells treated with high levels of PA exhibited increased glucose levels, whereas hepatic glycogen contents were decreased in a dose-dependent manner as compared to the control cells. There was a significant attenuation of IRS- 2 protein expression in the cells cultured with PA, and Wortmannin intervention exhibited different IRS-2 protein level with or without PA treatment. In accordance with the reduced IRS-2 level, the insulin-stimulated phosphorylation of Akt was diminished in the PA-treated cells. Basal PEPCK activity and insulin- regulated PEPCK activity were overstimulated in the cells incubated with PA. These data indicate high levels of FFA can disrupt glucose homeostasis, inflict some defects in insulin signaling, and induce insulin resistance in L02 cells.
ZR Lun does not agree as a co-author of this paper since he did not read the manuscript before it was submitted for publication. ZR Lun will not take any responsibility causing by the results presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.