To gain a deeper understanding of the structural and evolutionary characteristics of supercell tornadoes that occurred in eastern China on 14 May 2021, observations from the S-band dual-polarization radars, soundings and other instruments are used to investigate the evolutionary process of the tornado formation by the mergering and strengthening of supercell storms. The results are described as follows. The updraft by upper divergence and vertical thermal instability induced by the cold source at the tropopause provided the environmental conditions suitable for tornado formation. The tornado event involved three storm merger processes, each of which was associated with an increase in the echo intensity, vertical rising speed, and vertical vorticity of the supercell. Furthermore, during the last merger, the merging of the two vortices resulted in the reduction of the rotation radius of the new vortex, which also provided a favorable condition for tornadogenesis. A schematic was proposed to describe storm mergers. The characteristics of the velocity spectrum width were indicative of the occurrence and evolution of the tornado in this case. During the tornado stage, distinct polarimetric variable signatures (e.g., a tornado debris signature and a differential reflectivity arc) and radial velocity signatures (i.e., a tornadic vortex signature) were observed.
The M change characteristics in continuing current process of negative cloud-to-ground lightning discharge and artificially triggering lightning discharge are comparatively analyzed using the synchronous data of optical channel high-speed video camera pictures, electric field changes on ground and the peak very high frequency radiation. The results indicate that M process could be identified accurately from synchronous data of optical channel luminance and electric field changes on ground. There are lots of rapid changes of electric field (MP) prior to and during classic M change. And the M changes caused by lots of MP changes. There is mostly no difference in waveform characteristics between M changes and K changes and their generated physical mechanisms are similar. MP change is a rapid change of electric field corresponding to the rapid flow of charge caused by the breakdown process in the stage of continuous current process and accompanied with channel sudden brightening and high intensity radiation. Most of the M changes are unipolar, positive or negative and a few are irregular and last within 0.1 ms. Only M change in close lightning discharge exhibits a classic U-shaped structure because of its waveform mostly caused by static electric field, and its duration is about from 0.2 to 0.8 ms. MP and K changes are all caused by the breakdown. The difference between MP and K changes is that the electric charges flow into the original return stroke channel in the process of MP change, but not in the process of K change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.