Photoluminescence (PL) properties of InN dots embedded in GaN were investigated. We observed a systematic blueshift in the emission energy as the average dot height was reduced. The widely size-tunable emission energy can be ascribed to the size quantization effect. Temperature-dependent PL measurements show that the emission peak energies of the dots are insensitive to temperature, as compared with that of bulk film, indicating the localization of carriers in the dots. A reduced quenching of the PL from the InN dots was also observed, implying superior emission properties for the embedded InN dot structures.
A systematic study on the deformation mechanisms of molybdenum (Mo) nanowires (NWs) was conducted using molecular dynamics simulations. Both axial orientation and wire thickness were found to play important roles in determining the deformation pathways. In the NWs with orientation 〈110〉/{111}, full dislocation plasticity is referentially activated on {110} planes. For both 〈100〉/{110} and 〈100〉/{100} NWs, twinning is the dominant mechanism with {112} being the coherent twin boundaries. A progressive slip process leads to a uniform elongation of 41% and the 〈100〉 wire axis reorients to 〈110〉. For 〈100〉/{100} NWs, the reorientation mechanism ceases to operate when the diameter d < 1 nm or d > 8 nm. The atomic chains are energetically preferred for ultrathin NWs after yielding due to the resemblance of the surface to the close-packed bcc planes, while multiple slip systems tend to be activated for larger NWs. Finally, a theoretical model is proposed to explain the underlying mechanism of size dependence of the yield stress.
Regardless of the dissimilarity in the crystal symmetry, the two-dimensional GaSe materials grown on GaAs(001) substrates by molecular beam epitaxy reveal a screw-dislocation-driven growth mechanism. The spiral-pyramidal structure of GaSe multi-layers was typically observed with the majority in ε-phase. Comprehensive investigations on temperature-dependent photoluminescence, Raman scattering, and X-ray diffraction indicated that the structure has been suffered an amount of strain, resulted from the screw-dislocation-driven growth mechanism as well as the stacking disorders between monolayer at the boundaries of the GaSe nanoflakes. In addition, Raman spectra under various wavelength laser excitations explored that the common ε-phase of 2D GaSe grown directly on GaAs can be transformed into the β-phase by introducing a Se-pretreatment period at the initial growth process. This work provides an understanding of molecular beam epitaxy growth of 2D materials on three-dimensional substrates and paves the way to realize future electronic and optoelectronic heterogeneous integrated technology as well as second harmonic generation applications.
Self-assembled nanocomposites have gained much attention over the past decade due to their intriguing properties and functionalities. In this work, we developed a self-assembled nanocomposite photoanode composed of an epitaxial BiVO 4 matrix embedded with WO 3 mesocrystals for photoelectrochemical (PEC) applications in the visible-light regime. The orientation of the crystal facet and interface provides a superior template to understand the intimate contact between the two constituent phases. We demonstrate that the interfacial coupling of the mesocrystal and matrix improves the separation of photoexcited carriers and the properties of charge transfer, resulting in a greatly enhanced PEC performance compared with their parent compounds. The current study demonstrates that the utilization of the interface-to-volume ratio to optimize charge interactions in the nanocomposite is essential for the advanced design of novel mesocrystal-embedded nanocomposite photoelectrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.