Forsythoside A is a polyphenolic constituent of the fruits of Forsythia suspensa Vahl. which is widely used as an antiinflammatory agent in traditional Chinese medicine. In the present study, the effects of forsythoside A on cell infection by avian infectious bronchitis virus were assessed. A real-time fluorescence quantitative PCR assay was used to determine mRNA content of IBV N gene. The pretreatment of cells with forsythoside A, adding forsythoside A post infection of cells, and treatment of virus with forsythoside A were analysed. The inhibitory effect of forsythoside A was confirmed by infecting primary chicken embryo kidney cells. Infected cells were inhibited by forsythoside A treatment. The data indicated that forsythoside A has the potential to prevent IBV infection in vitro. Copyright © 2010 John Wiley & Sons, Ltd.
A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE). There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2%) possessed the bla TEM, floR, tetA, strA and aac (6')-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310), with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039). The int1, bla TEM, floR, tetA, strA and aac (6')-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone.
We evaluated the antimicrobial resistance of Salmonella isolated in 2008 from a chicken hatchery, chicken farms, and chicken slaughterhouses in China. A total of 311 Salmonella isolates were collected from the three sources, and two serogroups of Salmonella were detected, of which 133 (42.8%) consisted of Salmonella indiana and 178 (57.2%) of Salmonella enteritidis. The lowest percentage of S. indiana isolates was found in the chicken hatchery (4.2%), followed by the chicken farms (54.9%) and the slaughterhouses (71.4%). More than 80% of the S. indiana isolates were highly resistant to ampicillin (97.7%), amoxicillin/clavulanic acid (87.9%), cephalothin (87.9%), ceftiofur (85.7%), chloramphenicol (84.9%), florfenicol (90.9%), tetracycline (97.7%), doxycycline (98.5%), kanamycin (90.2%), and gentamicin (92.5%). About 60% of the S. indiana isolates were resistant to enrofloxacin (65.4%), norfloxacin (78.9%), and ciprofloxacin (59.4%). Of the S. indiana isolates, 4.5% were susceptible to amikacin and 5.3% to colistin. Of the S. enteritidis isolates, 73% were resistant to ampicillin, 33.1% to amoxicillin/clavulanic acid, 66.3% to tetracycline, and 65.3% to doxycycline, whereas all of these isolates were susceptible to the other drugs used in the study. The S. indiana isolates showed resistance to 16 antimicrobial agents. Strains of Salmonella (n = 108) carrying the resistance genes floR, aac(6')-Ib-cr, and bla(TEM) were most prevalent among the 133 isolates of S. indiana, at a frequency of 81.2%. The use of pulsed-field gel electrophoresis to analyze the S. indiana isolates that showed similar antimicrobial resistance patterns and carried resistance genes revealed six genotypes of these organisms. Most of these isolates had the common pulsed-field gel electrophoresis patterns found in the chicken hatchery, chicken farms, and slaughterhouses, suggesting that many multidrug-resistant isolates of S. indiana prevailed in the three sources. Some of these isolates were not derived from a specific clone, but represented a variety of genotypes of S. indiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.