This paper uses the first-principles and the tight-binding methods to study the electronic structures of twisted bilayer graphene for different angles. The band structures and density of states of twisted bilayer graphene in different angles are calculated. Our analysis points out that there is a linear dispersion relation in a twisted bilayer graphene, which is similar to a monolayer graphene, and the Fermi velocity of twisted graphene is lower and lower with reducing angle. Furthermore, gaps appearing at M point of certain angles, in which the width of gap depends on the twist angle, this gap would strengthen the Raman mode intensity of twisted bilayer graphene, as was confirmed by experiment. The comparison of moire patterns and the location of density of states both certify that AB region of moire patterns is the reason of gap at M point.
This paper focuses on the Li-storage performances and the stabilities of the hybrid structure of different lattice planes of the silicon clusters and graphene by the first-principles theory. In this paper, we calculate the binding energy, the adsorption energy, and the PDOS of the hybrid structure of the different heights and sizes of the silicon clusters and graphene. We figure out that strong Si-C bonds between the silicon cluster and graphene can form. Especially, the hybrid structure of the silicon clusters with plane (111) and graphene performs best with the highest formation energy and the outstanding stability. According to the calculation of Li-absorption energy, we conclude that the location of the silicon cluster near the graphene has higher possibility and higher absorption energy of the Li storage, owing to the charge transfers between lithium and carbon, and between lithium and silicon. Because the graphene is used, the deformation of the interface of the silicon cluster can be obviously reduced during the absorption of Li, which brings about a good future for the hybrid structure used as the battery anode materials.
For a semiconductor material, the characterization of its electronic band structure is very important for analyzing its physical properties and applications in semiconductor-based devices. Photoreflectance spectroscopy is a contactless and highly sensitive method of characterizing electronic band structures of semiconductor materials. In the photoreflectance spectroscopy, the modulation of pumping laser can cause a change in material dielectric function particularly around the singularity points of joint density of states. Thus the information about the critical points in electronic band structure can be obtained by measuring these subtle changes. However, in the conventional single-modulated photoreflectance spectroscopy, Rayleigh scattering and inevitable photoluminescence signals originating from the pumping laser strongly disturb the line shape fitting of photoreflectance signal and influence the determination of critical point numbers. Thus, experimental technique of photoreflectance spectroscopy needs further optimizing. In this work, we make some improvements on the basis of traditional measurement technique of photoreflectance spectroscopy. We set an additional optical chopper for the pumping laser which can modulate the amplitude of the photoreflectance signal. We use a dual-channel lock-in amplifier to demodulate both the unmodulated reflectance signals and the subtle changes in modulated reflectance signals at the same time, which avoids the systematic errors derived from multiple measurements compared with the single-modulated photoreflectance measurement. The combination of dual-modulated technique and dual-channel lock-in amplifier can successfully eliminate the disturbances from Rayleigh scattering and photoluminescence, thus improving the signal-to-noise ratio of the system. Under a visible laser (2.33 eV) pumping, we measure the room-temperature dual-modulated photoreflectance spectrum of semi-insulating GaAs in a region from near-infrared to ultraviolet (1.1 ~6.0 eV) and obtain several optical features which correspond to certain critical points in its electronic band structure. Besides the unambiguously resolved energy level transition of E0 and E0+0 around the bandgap, we also obtain several high-energy optical features above the energy of pumping laser which are related to high-energy level transitions of E1, E1+1, E0' and E2 in the electronic band structure of GaAs. This is consistent with the results from ellipsometric spectroscopy and electroreflectance spectroscopy. The results demonstrate that for those high-energy optical features, the mechanism for photoreflectance is that the photon-generated carriers modulate the build-in electric field which affects the overall electronic band structures, rather than the band filling effect around those critical points. This indicates that dual-modulated photoreflectance performs better in the characterization of semiconductors electronic band structure at critical point around and above its bandgap.
Suspended two-dimensional (2D) materials have been widely used to improve the device performances in comparison with the case of supported 2D materials. To realize such a purpose, 2D materials are mainly suspended on the holes of substrates, which are usually used to support 2D materials. The holes beneath the 2D materials are usually full of air. The air layer with the thickness identical to the hole depth will affect the spectral features of the reflection and photoluminescence spectra of suspended 2D materials because there exist multiple optical interferences in the air/2D-flakes/air/Si multilayer structures. However, it is not clear that how the spectral features depend on the hole depth. In this paper, the reflection spectra of suspended multilayer graphene and MoS2flakes as well as the photoluminescence spectra of suspended multilayer MoS2flakes are systematically studied. The reflection spectra of suspended multilayer graphene flakes exhibit obvious oscillations, showing the optical characteristic with periodic oscillations in wavenumber. The oscillation period decreases with increasing the hole depth (or the thickness of the air layer), but is independent of the thickness of suspended graphene flakes. This can be well explained by the model based on multiple optical interferences in the air/graphenes/air/Si multilayer structures, which have been successfully utilized to understand the Raman intensity of ultrathin 2D flakes and substrate beneath the ultrathin 2D flakes dependent on the thickness of 2D flakes, the thickness of SiO2 layer, the laser wavelength and the numerical aperture of objective. The theoretical simulation shows that the oscillation is obviously observable only when the hole depth reaches up to the value on the order of microns. For suspended multilayer MoS2flakes, the reflection and photoluminescence spectra show similar periodic oscillations in wavenumber and the oscillation period is also dependent on the hole depth. The hole depth is measured by the surface profiler. It is found that the calculated oscillation period based on the measured hole depth and multiple optical interference model is usually larger than the experimental one, which is attributed to the existence of the dielectric layer in the holes. The dielectric layer may be the residues after the hole etching process, which have much smaller refractive indexes than substrates and 2D flakes. This results in an increase of the effective hole depth, which becomes larger than the one measured by the surface profiler. The observation of oscillation period in the reflection and photoluminescence spectra of different flakes of 2D materials demonstrates that the periodic oscillation is a general optical characteristic for optical spectra of suspended 2D materials. In principle, the electroluminescence spectra of suspended 2D materials may also exhibit similar periodic oscillations in wavenumber. These findings may be helpful for understanding the optical spectra of various suspended 2D materials and monitoring the existence of the residues in the holes of substrate after the etching process.
When ultra-thin graphite intercalation compounds (GICs) are deposited on the SiO2/Si substrate, it is found that their colors are dependent on the thickness of GIC flakes. The sample colors of ultrathin GIC flakes can no longer provide qualitative information on the stage index. Here, multi-wavelength Raman spectroscopy is thus applied to study the doping inhomogeneity and staging of ultra-thin GICs by FeCl3 intercalation. The G band intensity of stage-1 GIC flakes is strongly enhanced by 532-nm laser excitation, while that of stage-2 and stage-3 flakes exhibits strong intensity enhancement for 785-nm laser excitation. The near-infrared lasers are suggested to probe the doping inhomogeneity and staging of ultra-thin GIC flakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.