Generally, histone deacetylase (HDAC) inhibitor-induced p21Waf1/Cip1 expression is thought to be p53 independent. Here we found that an inhibitor of HDAC, depsipeptide (FR901228), but not trichostatin A (TSA), induces p21 Waf1/Cip1 expression through both p53 and Sp1/Sp3 pathways in A549 cells (which retain wild-type p53). This is demonstrated by measuring relative luciferase activities of p21 promoter constructs with p53 or Sp1 binding site mutagenesis and was further confirmed by transfection of wild-type p53 into H1299 cells (p53 null). That p53 was acetylated after depsipeptide treatment was tested by sequential immunoprecipitation/Western immunoblot analysis with anti-acetylated lysines and anti-p53 antibodies. The acetylated p53 has a longer half-life due to a significant decrease in p53 ubiquitination. Further study using site-specific antiacetyllysine antibodies and transfection of mutated p53 vectors (K319/K320/K321R mutated and K373R/K382R mutations) into H1299 cells revealed that depsipeptide specifically induces p53 acetylation at K373/K382, but not at K320. As assayed by coimmunoprecipitation, the K373/K382 acetylation is accompanied by a recruitment of p300, but neither CREB-binding protein (CBP) nor p300/CBP-associated factor (PCAF), to the p53 C terminus. Furthermore, activity associated with the binding of the acetylated p53 at K373/K382 to the p21 promoter as well as p21Waf1/Cip1 expression is significantly increased after depsipeptide treatment, as tested by chromatin immunoprecipitations and Western blotting, respectively. In addition, p53 acetylation at K373/K382 is confirmed to be required for recruitment of p300 to the p21 promoter, and the depsipeptide-induced p53 acetylation at K373/K382 is unlikely to be dependent on p53 phosphorylation at Ser15, Ser20, and Ser392 sites. Our data suggest that p53 acetylation at K373/K382 plays an important role in depsipeptide-induced p21 Waf1/Cip1 expression.
MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G 2 /M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and Brca1 to DNA damage foci was completely abolished. Mechanistic studies suggested that Mof-mediated H4 K16 acetylation and an intact acidic pocket on H2A.X were essential for the recruitment of Mdc1. Removal of Mof and its associated proteins phenocopied a charge-neutralizing mutant of H2A.X. Given the well-characterized H4-H2A trans interactions in regulating higher-order chromatin structure, our study revealed a novel chromatin-based mechanism that regulates the DNA damage repair process.In eukaryotes, DNA is packaged with core histones and other nonhistone chromosomal proteins into several orders of chromatin structure with increasing compaction. Many cellular processes, including transcription, DNA replication, and DNA damage repair (DDR), are regulated in the context of chromatin. Recent studies have shown that histone modification (e.g., RNF8 and RNF168) and chromatin-remodeling activities (e.g., INO80 and SWR1) facilitate the accumulation and function of DNA repair proteins at the damage foci (52). Most of the regulations are achieved at the level of nucleosomes. Specifically, chromatin regulatory activities can either alter nucleosome structure and location or modulate histone-DNA contacts to promote association of trans-acting factors with DNA and recruit important components of the signaling cascade to DNA damage repair centers (16). Among them, the function of Saccharomyces Cerevisiae histone acetyltransferase (HAT) NuA4 and its mammalian homolog, Tip60, have been well characterized in this process (45, 52). Mutations in NuA4 or its lysine substrates on histone H4 tail in yeast led to increased sensitivity to DNA-damaging reagents and impaired doublestrand repair by nonhomologous end joining (NHEJ) (3, 11). In higher eukaryotes, it has been shown that Tip60 regulates DNA repair through acetylation of both H2A and H2A.X, which facilitates polyubiquitination and dynamic exchange of H2A.X at the damage foci, and of histone H4 at lysine 5 (H4 K5), H4 K8, and H4 K12, which facilitates nucleosome remodeling and establishes less condensed nucleosome arrays (42,44). Although regulation of DNA damage repair by higherorder chromatin structures has been proposed in these studies, mechanistic details remain unclear.Unlike most histone modifications, H4 K16 acetylation (H4 K16ac) is unique for regulating higher-order chromatin structures beyond the level of nucleosomes. It was first reported in t...
SUMMARY In mammals, MYST family histone acetyltransferase MOF plays important roles in transcription activation by acetylating histone H4 on K16, a prevalent mark associated with chromatin decondensation, and transcription factor p53 on K120, which is important for activation of pro-apoptotic genes. However, little is known about MOF regulation in higher eukaryotes. Here, we report that the acetyltransferase activity of MOF is tightly regulated in two different but evolutionarily conserved complexes, MSL and MOF-MSL1v1. Importantly, we demonstrate that while the two MOF complexes have indistinguishable activity on histone H4 K16, they differ dramatically in acetylating non-histone substrate p53. We further demonstrate that MOF-MSL1v1 is specifically required for optimal transcription activation of p53 target genes both in vitro and in vivo. Our results support a model that these two MOF complexes regulate distinct stages of transcription activation in cooperation with other histone modifying activities.
SUMMARY We demonstrate that RING finger protein MSL2 in the MOF-MSL complex is a histone ubiquitin E3 ligase. MSL2, together with MSL1, has robust histone ubiquitylation activity that mainly targets nucleosomal H2B on lysine 34 (H2B K34ub), a site within a conserved basic patch on H2B tail. H2B K34ub by MSL1/2 directly regulates H3 K4 and K79 methylation through trans-tail crosstalk both in vitro and in cells. The significance of MSL1/2 mediated histone H2B ubiquitylation is underscored by facts that MSL1/2 activity is important for transcription activation at HOXA9 and MEIS1 loci and that this activity is evolutionarily conserved in the Drosophila dosage compensation complex. Altogether, these results establish that the MOF-MSL complex possesses two distinct chromatin-modifying activities (i.e. H4 K16 acetylation and H2B K34 ubiquitylation) through MOF and MSL2 subunits. They also shed new lights on how intricate network of chromatin modifying enzymes functions coordinately in gene activation.
Histone deacetylase (HDAC) inhibitors have been shown to induce cell cycle arrest and apoptosis in cancer cells. However, the mechanisms of HDAC inhibitor induced apoptosis are incompletely understood. In this study, depsipeptide, a novel HDAC inhibitor, was shown to be able to induce significant apoptotic cell death in human lung cancer cells. Further study showed that Bim, a BH3-only proapoptotic protein, was significantly upregulated by depsipeptide in cancer cells, and Bim's function in depsipeptide-induced apoptosis was confirmed by knockdown of Bim with RNAi. In addition, we found that depsipeptide-induced expression of Bim was directly dependent on acetylation of forkhead box class O1 (FoxO1) that is catalyzed by cyclic adenosine monophosphate-responsive element-binding protein-binding protein, and indirectly induced by a decreased four-and-a-half LIM-domain protein 2. Moreover, our results demonstrated that FoxO1 acetylation is required for the depsipeptide-induced activation of Bim and apoptosis, using transfection with a plasmid containing FoxO1 mutated at lysine sites and a luciferase reporter assay. These data show for the first time that an HDAC inhibitor induces apoptosis through the FoxO1 acetylation-Bim pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.