Multi-omics data are increasingly being gathered for investigations of complex diseases such as cancer. However, high dimensionality, small sample size, and heterogeneity of different omics types pose huge challenges to integrated analysis. In this paper, we evaluate two network-based approaches for integration of multi-omics data in an application of clinical outcome prediction of neuroblastoma. We derive Patient Similarity Networks (PSN) as the first step for individual omics data by computing distances among patients from omics features. The fusion of different omics can be investigated in two ways: the network-level fusion is achieved using Similarity Network Fusion algorithm for fusing the PSNs derived for individual omics types; and the feature-level fusion is achieved by fusing the network features obtained from individual PSNs. We demonstrate our methods on two high-risk neuroblastoma datasets from SEQC project and TARGET project. We propose Deep Neural Network and Machine Learning methods with Recursive Feature Elimination as the predictor of survival status of neuroblastoma patients. Our results indicate that network-level fusion outperformed feature-level fusion for integration of different omics data whereas feature-level fusion is more suitable incorporating different feature types derived from same omics type. We conclude that the network-based methods are capable of handling heterogeneity and high dimensionality well in the integration of multi-omics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.