Ultra-broadband terahertz communication systems are expected to help satisfy the ever-growing need for unoccupied bandwidth. Due to high attenuation of terahertz wave, it can be widely used in indoor WLAN data communication. Future THz WLANs will rely on not only the line-of-sight (LOS) but also the nonline-of-sight (NLOS) channels to perform data communication. Hence, both kinds of channels have to be characterized. In this paper, we present the measures of ultra-broadband channel at 340 GHz for an indoor scenario. The measured channel transfer function is compared with a ray tracing simulation performed with the indoor scenario. Additionally, we show the reflection losses of some building and plastic materials which could be required as input data for the ray tracing algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.