Underwater wireless optical communication (UWOC) will play an important role in the underwater environment exploration and marine resource development due to its advantages of high data rate and good mobility. However, the significant signal power attenuation in the underwater channel limits the transmission distance of UWOC. Attenuation length (AL) is widely used as an indicator for evaluating the UWOC system's long-distance transmission capability. At present, Gbps UWOC is limited within 7AL. Using a SiPM based receiver can dramatically increase the AL that UWOC can support. In this paper, a novel UWOC receiver built from an off-the-shelf SiPM has been demonstrated. The finite pulse width and limited bandwidth of SiPM limit the SiPM based UWOC system's data rate. To boost the system's data rate, an optimum method to process the SiPM's signal has therefore been investigated. Based on these methods, the communication capabilities of the SiPM based UWOC have been investigated experimentally. Results show that the SiPM based receiver can support 11.6AL without turbulence and 9.28AL within weak turbulence (scintillation index = 0.0447) at 1 Gbps.
In this Letter, a two-dimensional (2D) beam steering on silicon nitride (SiNx) nanophotonic phased arrays from visible to near-infrared wavelengths is reported for the first time, to the best of our knowledge. In order to implement beam steering along the transverse direction for one-dimensional waveguide surface grating arrays, wavelengths from 650 to 980 nm provided by the supercontinuum laser are used to excite the phased array. Then the beams are parallel radiated with steering angles in a sequence of 26.84° to
−
16.54
∘
along the transverse direction, and a continuous line in the far field consisting of parallel emitted spots is produced with a total view angle of 43.38°. Moreover, this continuous far-field line is steered along the longitudinal direction with massive wavelengths simultaneously tuned by phase shifts from
−
π
/
2
to over
+
π
/
2
. This method with massive parallel wavelengths emitted paves a new way for 2D steering on SiNx nanophotonic phased arrays.
In this Letter, the broadband operation in wavelengths from 520 nm to 980 nm is demonstrated on silicon nitride nanophotonic phased arrays. The widest beam steering angle of 65° on a silicon nitride phased array is achieved. The optical radiation efficiency of the main grating lobe in a broad wavelength range is measured and analyzed theoretically. The optical spots radiated from the phased array chip are studied at different wavelengths of lasers. The nanophotonic phased array is excited by a supercontinuum laser source for a wide range of beam steering for the first time to the best of our knowledge. It paves the way to tune the wavelength from visible to near infrared range for silicon nitride nanophotonic phased arrays.
Highly-time-resolved and precise tracking of position, velocity, and acceleration is urgently required when highly dynamic legged robots are walking, trotting, and jumping. Frequency-modulated continuous-wave (FMCW) laser ranging is able to provide precise measurement in short distance. However, FMCW light detection and ranging (LiDAR) suffers from a low acquisition rate and poor linearity of laser frequency modulation in wide bandwidth. A sub-millisecond-scale acquisition rate and nonlinearity correction in the wide frequency modulation bandwidth have not been reported in previous studies. This study presents the synchronous nonlinearity correction for a highly-time-resolved FMCW LiDAR. The acquisition rate of 20 kHz is obtained by synchronizing the measurement signal and the modulation signal of laser injection current with a symmetrical triangular waveform. The linearization of laser frequency modulation is conducted by resampling of 1000 intervals interpolated in every up-sweep and down-sweep of 25 µs, while measurement signal is stretched or compressed in every period of 50 µs. The acquisition rate is demonstrated to be equal to the repetition frequency of laser injection current for the first time to the best of authors’ knowledge. This LiDAR is successfully used to track the foot trajectory of a jumping single-leg robot. The high velocity up to 7.15 m/s and high acceleration of 365 m/s2 are measured during the up-jumping phase, while heavy shock takes place with high acceleration of 302 m/s2 as the foot end strikes the ground. The measured foot acceleration of over 300 m/s2, which is more than 30 times gravity acceleration, is reported on a jumping single-leg robot for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.