Single-site mutants in the Cu,Zn superoxide dismutase (SOD) gene (SOD1) occur in patients with the fatal neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). Complete screening of the SOD1 coding region revealed that the mutation Ala4 to Val in exon 1 was the most frequent one; mutations were identified in exons 2, 4, and 5 but not in the active site region formed by exon 3. The 2.4 A crystal structure of human SOD, along with two other SOD structures, established that all 12 observed FALS mutant sites alter conserved interactions critical to the beta-barrel fold and dimer contact, rather than catalysis. Red cells from heterozygotes had less than 50 percent normal SOD activity, consistent with a structurally defective SOD dimer. Thus, defective SOD is linked to motor neuron death and carries implications for understanding and possible treatment of FALS.
Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are neurodegenerative conditions that affect large motor neurons of the central nervous system. We have identified a familial juvenile PLS (JPLS) locus overlapping the previously identified ALS2 locus on chromosome 2q33. We report two deletion mutations in a new gene that are found both in individuals with ALS2 and those with JPLS, indicating that these conditions have a common genetic origin. The predicted sequence of the protein (alsin) may indicate a mechanism for motor-neuron degeneration, as it may include several cell-signaling motifs with known functions, including three associated with guanine-nucleotide exchange factors for GTPases (GEFs).
Twenty percent of the familial form of amyotrophic lateral sclerosis (ALS) is caused by mutations in the Cu, Zn-superoxide dismutase gene (SOD1) through the gain of a toxic function. The nature of this toxic function of mutant SOD1 has remained largely unknown. Here we show that WT SOD1 not only hastens onset of the ALS phenotype but can also convert an unaffected phenotype to an ALS phenotype in mutant SOD1 transgenic mouse models. Further analyses of the single-and double-transgenic mice revealed that conversion of mutant SOD1 from a soluble form to an aggregated and detergent-insoluble form was associated with development of the ALS phenotype in transgenic mice. Conversion of WT SOD1 from a soluble form to an aggregated and insoluble form also correlates with exacerbation of the disease or conversion to a disease phenotype in double-transgenic mice. This conversion, observed in the mitochondrial fraction of the spinal cord, involved formation of insoluble SOD1 dimers and multimers that are crosslinked through intermolecular disulfide bonds via oxidation of cysteine residues in SOD1. Our data thus show a molecular mechanism by which SOD1, an important protein in cellular defense against free radicals, is converted to aggregated and apparently ALS-associated toxic dimers and multimers by redox processes. These findings provide evidence of direct links among oxidation, protein aggregation, mitochondrial damage, and SOD1-mediated ALS, with possible applications to the aging process and other late-onset neurodegenerative disorders. Importantly, rational therapy based on these observations can now be developed and tested.crosslinked ͉ disulfide bonds ͉ oxidation ͉ protein aggregation ͉ neurodegeneration A myotrophic lateral sclerosis (ALS) is a progressive paralytic disorder caused by degeneration of the motor neurons in brain and spinal cord (1). Most of the ALS cases are sporadic, with Ϸ5-10% being familial. The progressive paralysis in ALS usually affects respiratory function, leading to ventilatory failure and death; 50% of patients die within 3 years of onset of symptoms, and 90% die within 5 years. The juvenile form of ALS usually has a prolonged course of two to four decades. There is no known effective treatment for this fatal disease, although marginal delay in mortality has been noted with the drug riluzole (2).Familial ALS can be transmitted as either a dominant or a recessive trait. We and our collaborators have previously shown that mutations in the Cu, Zn-superoxide dismutase gene (SOD1) are associated with Ϸ20% of familial ALS cases (3, 4). The pathogenic mechanisms underlying this disease are still largely unknown. Most, but not all, transgenic mice overexpressing ALS-associated SOD1 mutants develop ALS-like disease (5), and transgenic mice overexpressing human WT SOD1 (hwtSOD1) or SOD1-deficient mice do not develop ALS-like disease (5, 6), suggesting that mutant SOD1 requires a threshold of expression to cause the disease through the gain of a toxic property.Thus far, Ͼ100 mutations, widely distrib...
The localization of a gene causing familial amyotrophic lateral sclerosis provides a means of isolating this gene and studying its function. Insight gained from understanding the function of this gene may be applicable to the design of rational therapy for both the familial and sporadic forms of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.