Based on Timoshenko's beam theory, this paper adopts segmented strategy in establishing the governing equations of a multibeam system subjected to various boundary conditions, in which free, clamped, hinged, and elastic constraints are considered. Meanwhile, Galerkin method is incorporated as a competitive alternative, in which a new set of unified, efficient, and reliable trial functions are proposed. A further optimization in regard to boundary distributions under forces is implemented and established on the least absorbed energy principle. High agreement is observed between the analytical results and the FEM results, verifying the correctness of the derivations. Complete comparisons between the analytical and the numerical results indicate the Galerkin method is beneficial when slender ratio is larger than 30, in which the continuity of the deformation is proved to be a crucial influencing factor. A modified numerical strategy about optimal boundary is employed and the remarks imply the algorithm can be availably used to reduce the energy absorption of the whole system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.