The holographic entanglement entropy for the most general higher derivative gravity is investigated. We find a new type of Wald entropy, which appears on entangling surface without the rotational symmetry and reduces to usual Wald entropy on Killing horizon. Furthermore, we obtain a formal formula of HEE for the most general higher derivative gravity and work it out exactly for some squashed cones. As an important application, we derive HEE for gravitational action with one derivative of the curvature when the extrinsic curvature vanishes. We also study some toy models with non-zero extrinsic curvature. We prove that our formula yields the correct universal term of entanglement entropy for 4d CFTs. Furthermore, we solve the puzzle raised by Hung, Myers and Smolkin that the logarithmic term of entanglement entropy derived from Weyl anomaly of CFTs does not match the holographic result even if the extrinsic curvature vanishes. We find that such mismatch comes from the 'anomaly of entropy' of the derivative of curvature. After considering such contributions carefully, we resolve the puzzle successfully. In general, we need to fix the splitting problem for the conical metrics in order to derive the holographic entanglement entropy. We find that, at least for Einstein gravity, the splitting problem can be fixed by using equations of motion. How to derive the splittings for higher derivative gravity is a non-trivial and open question. For simplicity, we ignore the splitting problem in this paper and find that it does not affect our main results.
This paper is an extended version of our short letter on a new proposal for holographic boundary conformal field, i.e., BCFT. By using the Penrose-Brown-Henneaux (PBH) transformation, we successfully obtain the expected boundary Weyl anomaly. The obtained boundary central charges satisfy naturally a c-like theorem holographically. We then develop an approach of holographic renormalization for BCFT, and reproduce the correct boundary Weyl anomaly. This provides a non-trivial check of our proposal. We also investigate the holographic entanglement entropy of BCFT and find that our proposal gives the expected orthogonal condition that the minimal surface must be normal to the spacetime boundaries if they intersect. This is another support for our proposal. We also find that the entanglement entropy depends on the boundary conditions of BCFT and the distance to the boundary; and that the entanglement wedge behaves a phase transition, which is important for the self-consistency of AdS/BCFT. Finally, we show that the proposal of arXiv:1105.5165 is too restrictive that it always make vanishing some of the boundary central charges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.