In this paper, a novel and simple method for predicting the peak response of RC beams subjected to impact loading is proposed. e theoretical basis for calculating the peak impact force originates from the contact law, the principle of conservation of energy, the impulse-momentum theorem, and the wave theory. Additionally, the conventional beam theory, in conjunction with the wellknown layered-section approach, is utilized to obtain the force-deflection relationship of the RC beam. Subsequently, by taking into account the strain rate effect, the maximum midspan deflection of RC beams under impact loading is determined based on the conservation of energy approach. A comparison with 143 impact tests has shown that the proposed method is able to estimate the maximum midspan deflection of RC beams under impact loading with high accuracy. e prediction of the peak impact force is shown to be slightly overestimated, which however can be used in the anti-impact design to preclude the shear failure near the impact point.
Reinforced concrete (RC) beams under the impact loading are typically prone to suffer shear failure in the local response phase. In order to enhance the understanding of the mechanical behavior of the RC beams, their dynamic response and shear demand are numerically investigated in this paper. A 3D finite-element model is developed and validated against the experimental data available in the literature. Taking advantage of the above calibrated numerical model, an intensive parametric study is performed to identify the effect of different factors including the impact velocity, impact mass and beam span-to-depth ratio on the impact response of the RC beams. It is found that, due to the inertial effect, a linear relationship exists between the maximum reverse support force and the peak impact force, while negative bending moments also appear in the shear span. In addition, the local response of the RC beams can be divided into a first impact stage and a separation stage. A shear plug is likely to be formed near the impact point at the first impact stage and a shear failure may be triggered near the support by large support forces. Based on the simulation results, simplified methods are proposed for predicting the shear demand for the two failure modes, whereas physical models are also established to illustrate the resistance mechanism of the RC beams at the peak impact force. By comparing with the results of the parametric study, it is concluded that the shear demand of the RC beams under the impact loading can be predicted by the proposed empirical formulas with reasonable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.