Nanostructure-enhanced pool and flow boiling has the potential to increase the efficiency of a plethora of applications. Past studies have developed well-ordered, nonscalable structures to study the fundamental limitations of boiling such as bubble nucleation, growth, and departure, often in a serial manner without global optimization. Here, we develop a highly scalable, conformal, cost-effective, rapid, and tunable three-tier hierarchical surface deposition technique capable of holistically creating micropores, microscale dendritic clusters, and nanoparticles on arbitrary surfaces. We use this technique to investigate the pool boiling heat transfer performance with focus on the bubble departure diameter and frequency. By tuning the structure length scale, the pool boiling characteristics were optimized through a multipronged approach, including increasing nucleation site density (micropores), regulating bubble evolution behavior (dendritic structures), improving surface wickability (nanoscale particles and channels), and separating liquid and vapor pathways (micropores and micro/nanochannels). Ultrahigh critical heat fluxes (CHF) ≈400 W/cm2 were obtained, corresponding to an enhancement of ≈245% compared to smooth copper surfaces. To study in situ bubble departure and coalescence dynamics, we developed and used high-magnification in-liquid endoscopy. Our work reveals the existence of a linear relationship between the bubble departure diameter/frequency near the onset of nucleate boiling and CHF enhancement. Our study not only develops a highly scalable, conformal, and rapid micro/nanostructuring technique, it outlines design guidelines for the holistic optimization of boiling heat transfer for energy and water applications.
Microchannel surfaces are common to microfluidics, biofluidics, thermal management, and energy applications. Due to processing limitations for the majority of metallic materials, the majority of hyperfine microchannels used in microfluidics and thermo‐fluids are fabricated on non‐metallic substrates, for example, silicon and polydimethylsiloxane. Here, a technique to fabricate ultrasmall microchannels on arbitrary metallic materials is developed using photolithography in combination with electrochemical deposition. The technique is used to prepare copper microchannels and to investigate the pool boiling heat transfer performance with a focus on the three‐phase contact line dynamics. The hydrodynamics of nucleating bubbles during boiling are observed in situ using in‐liquid endoscopy. The results show that the variation of critical heat flux enhancement has a linear relationship with the contact line increase ratio. The scalable microchannel surfaces exhibit superior heat transfer performance with a maximum heat transfer coefficient) enhancement of 930% with ultra‐low wall superheat of 5 °C. This work not only develops a scalable manufacturing method to develop ultra‐small microchannels on metallic materials, it outlines design guidelines for structure optimization of pool boiling heat transfer for temperature sensitive applications, such as electronics thermal management.
Enhancing critical heat flux (CHF) during boiling with structured surfaces has received much attention because of its important implications for two-phase flow. The role of surface structures on bubble evolution and CHF enhancement remains unclear because of the lack of direct visualization of the liquid- and solid-vapor interfaces. Here, we use high-magnification in-liquid endoscopy to directly probe bubble behavior during boiling. We report the previously unidentified coexistence of two distinct three-phase contact lines underneath growing bubbles on structured surfaces, resulting in retention of a thin liquid film within the structures between the two contact lines due to their disparate advancing velocities. This finding sheds light on a previously unidentified mechanism governing bubble evolution on structured surfaces, which has notable implications for a variety of real systems using bubble formation, such as thermal management, microfluidics, and electrochemical reactors.
Micro‐ and nano‐structured surfaces having high wicking capability enable excellent liquid transport efficiency and have great promise in water desalination, atmospheric water harvesting, biomedical device development, and electronics thermal management applications. However, the poorly understood degeneration of surface wickability during exposure to air represents the main hindrance to societal application of structured surfaces. Here, the authors investigate wicking degeneration on structured surfaces and elucidate the importance of environmental volatile organic compound adsorption from air. Based on their developed mechanistic understanding, the authors design a highly scalable, cost‐effective, and hierarchical structure having both superior wicking capability and antidegeneration performance. Year‐long continuous surface wickability measurements demonstrate a 4100% higher surface wickability durability of this structure when compared to widely used single‐tier surface structures. Pool boiling tests coupled with in situ and in‐liquid optical microscopy are used to characterize the effect of wicking degradation on boiling heat transfer performance. This work demonstrates the previously unidentified coexistence of several dry areas underneath individual bubbles during boiling on highly wicking structured surfaces, resulting in significant augmentation of the three‐phase contact line length. In addition, this work outlines design guidelines for the fabrication of surface wicking structures having high performance and durability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.