This study aims to investigate the biological activities related to hair loss of Equisetum debile extracts, including 5α-reductase inhibition, interleukin-6 (IL-6) secretion reduction, and anti-oxidation. E. debile extracts were obtained by maceration in various solvents. Crude extract (CE) was obtained by maceration in 95% ethanol. Chlorophyll-free extract (CF) was the CE which of the chlorophyll has been removed by electrocoagulation. Hexane extract (HE), ethyl acetate extract (EA), and ethanolic extract (ET) were fraction extracts obtained from maceration in hexane, ethyl acetate, and 95% ethanol, respectively. The extracts were investigated for inhibitory activity against 5α-reductase and IL-6 secretion. Total phenolic contents (TPC) were investigated and antioxidant activities were determined by means of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2′-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The inhibition of lipid peroxidation was determined by the ferric thiocyanate method. The cytotoxicity of the extracts on dermal papilla cells and irritation test by hen's egg test chorioallantoic membrane assay were also investigated. All extracts could inhibit 5α-reductase and decrease IL-6 secretion in lipopolysaccharide-stimulated macrophage. The antioxidant activity of E. debile extracts was directly related to their TPC. ET which contained the highest TPC (68.8 ± 6.7 mg GA/g) showed the highest equivalent concentration (EC1) of 289.1 ± 26.4 mM FeSO4/g, TEAC of 156.6 ± 34.6 mM Trolox/g, and 20.0 ± 6.0% DPPH inhibition. However, EA exhibited the highest inhibition against lipid peroxidation (57.2 ± 0.4%). In addition, EA showed no cytotoxicity on dermal papilla cell line and no irritation on chorioallantoic membrane of hen’s eggs. In conclusion, EA was suggested as the most attractive ingredients for functional food and nutraceuticals because of the high inhibitory activity against 5α-reductase, IL-6 secretion, and lipid peroxidation inhibition.
Background Grape seed extract (GSE) is rich in polyphenolic compounds, particularly (+)‐catechin (C) and (‐)‐epicatechin (EC). Strong antioxidant activity of these compounds makes GSE to be value‐added to the cosmetics with anti‐aging properties. However, a lack of stability in different environmental conditions makes GSE challenging for the development of photostable cosmetic sunscreen products. Aims To evaluate photoprotective effects of GSE on human dermal fibroblasts irradiated with UVA light and assess photostability of catechins in cream formulations containing GSE alone or in combination with octyl methoxycinnamate (OMC). Methods MTT assay was used to assess protective effects of GSE on fibroblasts irradiated with UVA light. A photostability of C and EC in GSE and in cream formulation containing GSE was investigated using high‐performance liquid chromatography and confirmed by reflection and transmission spectrophotometry using Transpore™ tapes and polymethacrylate (PMMA) plates as substrates. Results High UVA doses damaged fibroblast structure and inhibited their growth. However, GSE increased cell viability and effectively protected them from UVA damage. Photostability of C and EC was achieved by combination of GSE and OMC that also improved absorption capacity of UV filter and increased overall efficacy of formulation. PMMA plates showed better applicability for in vitro photostability testing of sunscreen formulations. However, despite the instability of Transpore® tape under heat from UV exposure, it can still be economically a substrate of alternative choice for screening. Conclusions GSE can be used as an effective and sustainable natural resource for prevention of UV‐induced skin damage providing long‐term protection against premature skin aging.
Catechins are major antioxidants in green tea (Camellia sinensis or Camellia assamica), but because they do not permeate the skin well, the application of green tea in cosmetic products has so far been limited. This study aims to evaluate the cutaneous absorption of catechins from an extract of green tea and from a green tea extract-loaded chitosan microparticle. The catechin skin metabolism was also examined. The results suggest that chitosan microparticles significantly improve the ability of catechins to permeate skin. The cutaneous metabolism of the catechins significantly affected their permeation profiles. Epicatechin (EC) and epigallocatechin (EGC) penetrated the skin more than epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). The galloyl groups in EGCG and ECG were enzymatically hydrolysed to EGC and EC, respectively. Dehydroxylation of catechins was also observed. Chitosan microparticles effectively prevented enzymatic changes of the catechins; therefore, chitosan microparticles are here found to be the promising carriers for enhancing the skin permeation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.