Neuromorphic computing, which emulates the biological neural systems could overcome the high‐power consumption issue of conventional von‐Neumann computing. State‐of‐the‐art artificial synapses made of two‐terminal memristors, however, show variability in filament formation and limited capacity due to their inherent single presynaptic input design. Here, a memtransistor‐based artificial synapse is realized by integrating a memristor and selector transistor into a multiterminal device using monolayer polycrys‐talline‐MoS2 grown by a scalable chemical vapor deposition (CVD) process. Notably, the memtransistor offers both drain‐ and gate‐tunable nonvolatile memory functions, which efficiently emulates the long‐term potentiation/depression, spike‐amplitude, and spike‐timing‐dependent plasticity of biological synapses. Moreover, the gate tunability function that is not achievable in two‐terminal memristors, enables significant bipolar resistive states switching up to four orders‐of‐magnitude and high cycling endurance. First‐principles calculations reveal a new resistive switching mechanism driven by the diffusion of double sulfur vacancy perpendicular to the MoS2 grain boundary, leading to a conducting switching path without the need for a filament forming process. The seamless integration of multiterminal memtransistors may offer another degree‐of‐freedom to tune the synaptic plasticity by a third gate terminal for enabling complex neuromorphic learning.
Midinfrared (MIR), which covers numerous molecular vibrational fingerprints, has attracted enormous research interest due to its promising potential for label-free and damage-free sensing. Despite intense development efforts, the realization of waveguide-integrated on-chip sensing system has seen very limited success to date. The huge lattice mismatch between silicon and the commonly used detection materials such as HgCdTe, III–V, or II–VI compounds has been the key bottleneck that hinders their integration. Here, we realize an integration of silicon-on-insulator (SOI) waveguides with black phosphorus (BP) photodetectors. When operating near BP’s cutoff wavelength where absorption is weak, the light–BP interaction is enhanced by exploiting the optical confinement in the Si waveguide and grating structure to overcome the limitation of absorption length constrained by the BP thickness. Devices with different BP crystal orientation and thickness are compared in terms of their responsivity and noise equivalent power (NEP). Spectral photoresponse from 3.68 to 4.03 μm was investigated. Additionally, power-dependent responsivity and gate-tunable photocurrent were also studied. At a bias of 1 V, the BP photodetector achieved a responsivity of 23 A/W at 3.68 μm and 2 A/W at 4 μm and a NEP less than 1 nW/Hz1/2 at room temperature. The integration of passive Si photonics and active BP photodetector is envisaged to offer a potential pathway toward the realization of integrated on-chip systems for MIR sensing applications.
Bulk photovoltaic effect (BPVE), featuring polarization-dependent uniform photoresponse at zero external bias, holds potential for exceeding the Shockley-Queisser limit in the efficiency of existing opto-electronic devices. However, the implementation of BPVE has been limited to the naturally existing materials with broken inversion symmetry, such as ferroelectrics, which suffer low efficiencies. Here, we propose metasurface-mediated graphene photodetectors with cascaded polarization-sensitive photoresponse under uniform illumination, mimicking an artificial BPVE. With the assistance of non-centrosymmetric metallic nanoantennas, the hot photocarriers in graphene gain a momentum upon their excitation and form a shift current which is nonlocal and directional. Thereafter, we demonstrate zero-bias uncooled mid-infrared photodetectors with three orders higher responsivity than conventional BPVE and a noise equivalent power of 0.12 nW Hz−1/2. Besides, we observe a vectorial photoresponse which allows us to detect the polarization angle of incident light with a single device. Our strategy opens up alternative possibilities for scalable, low-cost, multifunctional infrared photodetectors.
Tremendous efforts have been devoted to preparing the ultrathin two‐dimensional (2D) transition‐metal dichalcogenides (TMDCs) and TMDCs‐based heterojunctions owing to their unique properties and great potential applications in next generation electronics and optoelectronics over the past decade. However, to fulfill the demands for practical applications, the batch production of 2D TMDCs with high quality and large area at the mild conditions is still a challenge. This feature article reviews the state‐of‐the‐art research progresses that focus on the preparation and the applications in electronics and optoelectronics of 2D TMDCs and their van der Waals heterojunctions. First, the preparation methods including chemical and physical vapor deposition growth are comprehensively outlined. Then, recent progress on the application of fabricated 2D TMDCs‐based materials is revealed with particular attention to electronic (eg, field effect transistors and logic circuits) and optoelectronic (eg, photodetectors, photovoltaics, and light emitting diodes) devices. Finally, the challenges and future prospects are considered based on the current advance of 2D TMDCs and related heterojunctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.