Peroxidase-like nanozymes are nanoscale materials that can closely mimic the activity of natural peroxidase for a range of oxidation reactions. Surface coating with polymer nanogels has been considered to prevent the aggregation of nanozymes. For a long time, the understanding of polymer coating has been largely limited to its stabilization effect on the nanozyme in aqueous media, while little is known about how polymer coating plays a role in interaction with substrates and primary oxidants to dictate the catalytic process. This work reported a facile sequential modification of Fe3O4 nanoparticles to polyacrylamide coated nanozymes, and as low as 112 mg/L samples with only 5 mg/L Fe3O4 could nearly quantitatively (99%) remove a library of organic dyes with either H2O2 or Na2S2O8 as primary oxidants. The catalytic results and molecular simulation provide both experimental and computational evidence that the hydrogen bonding interaction between the reactant and nanozymes is key for the high local concentration hence catalytic efficiency. We envision that this work, for the first time, provides some insights into the role of polymer coating in enhancing the catalytic activity of nanozyme apart from the well-known water dispersity effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.