Lanthanoid oxysulfides are promising materials for technological applications owing to their magnetic, photoluminescent, catalytic, and optoelectronic properties. Herein, we report the solid-state synthesis and structural characterization of Ln 10 S 14 O (Ln = La, Ce, Pr, Nd, Sm) oxysulfides. Then, we present a thorough discussion on their electronic and photophysical properties. Through Tauc plot analysis and the derivation of the absorption spectrum fitting method (DASF), we determine that all oxysulfides have direct band gaps with energies of 2.84 eV (La), 2.02 eV (Ce), 2.56 eV (Pr), 2.64 eV (Nd), and 2.41 eV (Sm). Furthermore, surface photovoltage spectroscopy (SPS) shows photovoltage (ΔCPD) values of −0.4 to −1.1 V for La-, Pr-, Nd-, and Sm-containing compounds when illuminated near the optical band gap, indicating that these oxysulfides are n-type semiconductors, which is consistent with Mott−Schottky analysis. Photovoltages under sub-band gap illumination energy and photovoltage decay data suggest mid-band gap states possibly arising from the lanthanoid 4f orbitals and/or defects within the crystal structure or at the particle surfaces. These photophysical properties suggest possible applications of the oxysulfides in photoelectrochemical and photovoltaic energy conversion.
The electronic structure and local coordination of binary (Mo6T8) and ternary Chevrel Phases (MxMo6T8) are investigated for a range of metal intercalant and chalcogen compositions. We evaluate differences in the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.