Heparan sulfates (HSs) 1 are highly sulfated polysaccharides, present on the surface of mammalian cells and in the extracellular matrix in large quantities. HSs play critical roles in a variety of important biological processes, including assisting viral infection, regulating blood coagulation and embryonic development, suppressing tumor growth, and controlling the eating behavior of mice by interacting with specific regulatory proteins (1-5). HS polysaccharides carry negative charges under physiological pH, and the disaccharide repeating units consist of 134-linked sulfated glucosamine and uronic acid. The unique sequences determine to which specific proteins HSs bind, thereby regulating biological processes.The biosynthesis of HS occurs in the Golgi apparatus. It is initially synthesized as a copolymer of glucuronic acid and N-acetylated glucosamine by D-glucuronyl and N-acetyl-D-glucosaminyltransferase, followed by various modifications (6). These modifications include N-deacetylation and N-sulfation of glucosamine, C 5 epimerization of glucuronic acid to form iduronic acid residues, 2-O-sulfation of iduronic and glucuronic acid, as well as 6-O-sulfation and 3-O-sulfation of glucosamine. Several enzymes that are responsible for the biosynthesis of HS have been cloned and characterized (see review by Esko and Lindahl (7). These enzymes have become essential tools for investigating the relationship between the structures and functions of HS.What is still unknown is the detailed mechanism for regulating the biosynthesis of HS with a defined saccharide sequence. A recent report (8) suggests that the expression levels of various HS biosynthetic enzyme isoforms contribute to the synthesis of specific saccharide sequences in specific tissues. HS N-deacetylase/N-sulfotransferase, 3-O-sulfotransferase, and 6-O-sulfotransferase are present in multiple isoforms. Each isoform is believed to recognize a saccharide sequence around the modification site in order to generate a specific sulfated saccharide sequence (8 -10). For instance, HS D-glucosaminyl 3-O-sulfotransferase (3-OST) isoforms generate 3-Osulfated glucosamine residues that are linked to different sulfated uronic acid residues. 3-OST-1 transfers sulfate to the 3-OH position of an N-sulfated glucosamine residue that is linked to a glucuronic acid residue at the nonreducing end
Caspases are proteolytic enzymes that are essential for apoptosis. Understanding the many discrete and interacting signaling pathways mediated by caspases requires the identification of the natural substrate repertoire for each caspase of interest. Using an amplification-based protein selection technique called mRNA display, we developed a high-throughput screen platform for caspase family member specific substrates on a proteome-wide scale. A large number of both known and previously uncharacterized caspase-3 substrates were identified from the human proteome. The proteolytic features of these selected substrates, including their cleavage sites and specificities, were characterized. Substrates that were cleaved only by caspase-8 or granzyme B but not by caspase-3, were readily selected. The method can be widely applied for efficient and systematic identification of the family member specific natural substrate repertoire of any caspase in an organism of interest, in addition to that of numerous other proteases with high specificity.in vitro protein selection ͉ mRNA display ͉ natural caspase substrate repertoire ͉ natural granzyme B substrates
ABSTRACT:The antiparasitic activity of aromatic diamidine drugs, pentamidine and furamidine, depends on their entry into the pathogenic protozoa via membrane transporters. However, no such diamidine transporter has been identified in mammalian cells. The goal of this study is to investigate whether these dicationic drugs are substrates for human organic cation transporters (hOCTs, solute carrier family 22A1-3) and whether hOCTs play a role in their tissue distribution, elimination, and toxicity. Inhibitory and substrate activities of pentamidine and furamidine were studied in stably trans-
DB844 (CPD-594-12), N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-furan-2-yl}-nicotinamidine, is an oral prodrug that has shown promising efficacy in both mouse and monkey models of second stage human African trypanosomiasis. However, gastrointestinal (GI) toxicity was observed with high doses in a vervet monkey safety study. In the current study, we compared the metabolism of DB844 by hepatic and extrahepatic cytochrome P450s to determine if differences in metabolite formation underlie the observed GI toxicity. DB844 undergoes sequential O-demethylation and N-dehydroxylation in the liver to form the active compound DB820 (CPD-593-12). However, extrahepatic CYP1A1 and CYP1B1 produced two new metabolites, MX and MY. Accurate mass and collision-induced dissociation mass spectrometry analyses of the metabolites supported proposed structures of MX and MY. In addition, MY was confirmed with a synthetic standard and detection of nitric oxide release when DB844 was incubated with CYP1A1. Taken altogether, we propose that MX is formed by insertion of an oxygen into the amidine C=N to form an oxaziridine, which is followed by intramolecular rearrangement of the adjacent O-methyl group and subsequent release of nitric oxide. The resulting imine ester, MX, is further hydrolyzed to form MY. These findings may contribute to furthering the understanding of toxicities associated with benzamidoxime- and benzmethamidoxime-containing molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.