Single-cell RNA-sequencing (scRNA-seq) has enabled transcriptome-wide profiling of gene expressions in individual cells. A myriad of computational methods have been proposed to learn cell-cell similarities and/or cluster cells, however, high variability and dropout rate inherent in scRNA-seq confounds reliable quantification of cell-cell associations based on the gene expression profile alone. Lately bioinformatics studies have emerged to capture key transcriptome information on alternative polyadenylation (APA) from standard scRNA-seq and revealed APA dynamics among cell types, suggesting the possibility of discerning cell identities with the APA profile. Complementary information at both layers of APA isoforms and genes creates great potential to develop cost-efficient approaches to dissect cell types based on multiple modalities derived from existing scRNA-seq data without changing experimental technologies. We proposed a toolkit called scLAPA for learning association for single-cell transcriptomics by combing single-cell profiling of gene expression and alternative polyadenylation derived from the same scRNA-seq data. We compared scLAPA with seven similarity metrics and five clustering methods using diverse scRNA-seq datasets. Comparative results showed that scLAPA is more effective and robust for learning cell-cell similarities and clustering cell types than competing methods. Moreover, with scLAPA we found two hidden subpopulations of peripheral blood mononuclear cells that were undetectable using the gene expression data alone. As a comprehensive toolkit, scLAPA provides a unique strategy to learn cell-cell associations, improve cell type clustering and discover novel cell types by augmentation of gene expression profiles with polyadenylation information, which can be incorporated in most existing scRNA-seq pipelines. scLAPA is available at https://github.com/BMILAB/scLAPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.