BackgroundLPS-inhibited osteoblastic differentiation plays an important role in the pathogenesis of osteomyelitis. Thus, searching for drugs that affect LPS-mediated osteoblastic differentiation may be crucial in developing therapies for osteomyelitis. The purpose of this study was to investigate the role and mechanisms of resveratrol, a natural polyphenol present in red wine, on LPS-inhibited osteoblastic differentiation.Material/MethodsCell viability was measured by MMT assay. Mitochondrial ATP levels, membrane potential, and superoxide production were measured to evaluate the effects of LPS and resveratrol on mitochondrial functions in osteoblast-like MC3T3-E1 cells. Osteoblast-related genes, including ALP, OCN, OPN, and RUNX2, were measured by ELISA analysis and RT-PCR in differentiated osteoblast cells treated with LPS and resveratrol. Cellular Sirt1 and PCG-1α levels were measured by Western blot to probe the impact of resveratrol treatment in LPS-stimulated MC3T3-E1 osteoblasts.ResultsThe results showed that LPS caused significant mitochondrial dysfunctions of MC3T3-E1 cells in a dose-dependent manner, which were attenuated by resveratrol. Furthermore, LPS markedly decreased the expression of ALP, OCN, OPN, and RUNX2 in MC3T3-E1 cells cultivated in osteoblast differentiation medium, suggesting that LPS inhibited the osteoblastic differentiation of MC3T3-E1 cells. However, resveratrol obviously alleviated the suppressive impact of LPS on osteoblast differentiation. In addition, resveratrol increased expression of Sirt1 and PGC-1α in MC3T3-E1 cells treated with LPS.ConclusionsTaken together, these results show that resveratrol alleviated the suppression of LPS on osteoblast differentiation by improving, at least in part, mitochondrial function.
The assembly of low molecular weight polymers into highly efficient and nontoxic nanostructures has broad applicability in gene delivery. In this study, we reported the assembly of coumarin-anchored low generation dendrimers in aqueous solution via hydrophobic interactions. The synthesized material showed significantly improved DNA binding and gene delivery, and minimal toxicity on the transfected cells. Moreover, the coumarin moieties in the assembled nanostructures endow the materials with light-responsive drug delivery behaviors. The coumarin substitutes in the assembled nanostructures were cross-linked with each other upon irradiation at 365 nm, and the cross-linked assemblies were degraded upon further irradiation at 254 nm. As a result, the drug-loaded nanoparticle showed a light-responsive drug release behavior and light-enhanced anticancer activity. The assembled nanoparticle also exhibited a complementary anticancer activity through the codelivery of 5-fluorouracil and a therapeutic gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study provided a facile strategy to develop light-responsive polymers for the codelivery of therapeutic genes and anticancer drugs.
ObjectivesThe aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy.MethodsHuman chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation.ResultsAfter IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK.ConclusionIL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway.Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414–421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1.
BackgroundFor a long time, chordoma has been known as an osseous tumor mainly found at the clivus and sacrococcygeal region. However, spine extra-osseous chordoma (SEC) with a better prognosis than the classic type has been neglected. According to our literature review, only several case reports have been published in English literatures. Here in this article, three cases of SEC, plus a literature review, are presented.Case presentationThree cases of SEC were presented from our center. Surprisingly, neurologic tumors were considered as the first diagnosis. Thereafter, en bloc resection was performed in all the three cases. Especially, the dumbbell-shaped one in the cervical spine was removed by en bloc through the combined anterior and posterior approach for the first time. Follow-up within 12–58 months after surgeries proved no recurrence or metastasis.ConclusionsSpine extra-osseous chordoma, commonly located in the cervical and epidural region, is extremely rarely met. SEC is characterized with less aggressiveness, the lower rate of recurrence and metastasis, and better prognosis than those of the osseous origin. Though complete excision can be achieved generally, differential diagnosis of spine neurogenic tumors and the following en bloc resection should be made as carefully as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.