This study aims to analyze the relationship between macroeconomic factors and risk-taking behavior in a dual banking system. Adopting a panel cointegration approach, this research posits macroeconomic factors as exogenous variables and risk-taking behavior as endogenous variables. With having 468 quarterlyobservations consisting of 18 banks in Indonesia during 2010-Q4 to 2017-Q1, it finds that the risk-taking behavior of the banks has a long-term relationship with macroeconomic factors. Moreover, conventional bank has long-term relationship to macroeconomic nonetheless it results inversely to Islamic bank. In terms of bankspecified characteristics, bank size and equity to asset ratio are substantial factors for the banks' risk mitigation.
The world facing a hard time during this time since the presence of coronavirus (COVID-19). Public can monitor and update the information related the virus and its spread during this time through the internet, Indonesian Mobile website. The purpose of this research is to analyze the factors that influence people’s acceptance of the website the using the Technology Acceptance Model (TAM) method. Five constructs of the TAM research model used are Perceived Usefulness, Perceived Ease of Use, Attitude Towards Use, Intentions of Use Behavior and Use of Actual Systems. Data obtained using an online questionnaire from Google Form. Valid questionnaire data is processed using the SmartPLS 3 application using three structural analysis models, namely external model analysis, inner model analysis, and hypothesis testing. The results showed that of all the hypotheses studied and obtained in each hypothesis can be stated significantly and proven acceptable.
Pandemi Covid-19 menjadi momok bagi masyarakat. Indonesia menjadi salah satu negara yang merasakan dampaknya. Segala bentuk kegiatan tidak luput dari pembatasan bahkan penghentian. Kegiatan pembelajaran di sekolah pun terpaksa dibatasi dan belajar secara daring (dalam jaringan), begitu pun yang terjadi di Desa Aji Kagungan. Dikhawatirkan jika terus berlanjut maka akan terjadi learning loss. Beberapa anak mengalami kendala dalam melaksanakan pembelajaran secara online. Oleh sebab itu, mahasiswa KKN Universitas Muhammadiyah Kotabumi mengadakan program bimbingan belajar bahasa Inggris dan bimbingan membaca dan menulis dengan menggunakan metode ceramah, diskusi, dan pendampingan. Pembelajaran dibuat semenarik mungkin agar siswa belajar dengan cara yang menyenangkan. Hasil dari kegiatan KKN di Desa Aji Kagungan, Kecamatan Abung Kunang Kotabumi Lampung Utara, yaitu siswa terbantu dengan pemahaman tugas-tugas sekolah, terbantu dengan belajar membaca dan menulis. Selain itu, bagi siswa yang tidak mendapatkan mata pelajaran bahasa Inggris di sekolahnya mengetahui dasar-dasar bahasa Inggris dari mahasiswa KKN. Kata Kunci: Pendampingan, Bimbingan Belajar, Learning Loss
Abstract Over decades, retail chains and department stores have been selling their products without using the transactional data generated by their sales as a source of knowledge. Abundant data availability, the need for information (or knowledge) as a support for decision making to create business solutions, and infrastructure support in the field of information technology are the embryos of the birth of data mining technology. Association rule mining is a data mining method used to extract useful patterns between data items. In this research, the Apriori algorithm was applied to find frequent itemset in association rule mining. Data processing using Tanagra tools. The dataset used was the Supermarket dataset consisting of 12 attributes and 108.131 transaction. The experimental results obtained by association rules or rules from the combination of item-sets beer wine spirit-frozen foods and snack foods as a Frequent itemset with a support value of 15.489% and a confidence value of 83.719%. Lift ratio value obtained was 2.47766 which means that there were some benefits from the association rule or rules. Keywords: Apriori, Association Rule Mining. Abstrak Selama beberapa dekade rantai ritel dan department store telah menjual produk mereka tanpa menggunakan data transaksional yang dihasilkan oleh penjualan mereka sebagai sumber pengetahuan. Ketersediaan data yang melimpah, kebutuhan akan informasi (atau pengetahuan) sebagai pendukung pengambilan keputusan untuk membuat solusi bisnis, dan dukungan infrastruktur di bidang teknologi informasi merupakan cikal-bakal dari lahirnya teknologi data mining. Data mining menemukan pola yang menarik dari database seperti association rule, correlations, sequences, classifier dan masih banyak lagi yang mana association rule adalah salah satu masalah yang paling popular. Association rule mining merupakan metode data mining yang digunakan untuk mengekstrasi pola yang bermanfaat di antara data barang. Pada penelitian ini diterapkan algoritma Apriori untuk pencarian frequent itemset dalam association rule mining. Pengolahan data menggunakan tools Tanagra. Dataset yang digunakan adalah dataset Supermarket yang terdiri dari 12 atribut dan 108.131 transaksi. Hasil eksperimen diperoleh aturan asosiasi atau rules dari kombinasi itemsets beer wine spirit-frozen foods dan snack foods sebagai Frequent itemset dengan nilai support sebesar 15,489% dan nilai confidence sebesar 83,719%. Nilai Lift ratio yang diperoleh sebesar 2,47766 yang artinya terdapat manfaat dari aturan asosiasi atau rules tersebut. Kata kunci: Apriori, Association rule mining
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.