Noncompressible torso hemorrhage is a leading cause of mortality in civilian and battlefield trauma. We sought to develop an i.v.-injectable, tissue factor (TF)-targeted nanotherapy to stop hemorrhage. Tissue factor was chosen as a target because it is only exposed to the intravascular space upon vessel disruption. Peptide amphiphile (PA) monomers that self-assemble into nanofibers were chosen as the delivery vehicle. Three TF-binding sequences were identified (EGR, RLM, and RTL), covalently incorporated into the PA backbone, and shown to self-assemble into nanofibers by cryo-transmission electron microscopy. Both the RLM and RTL peptides bound recombinant TF in vitro. All three TF-targeted nanofibers bound to the site of punch biopsy-induced liver hemorrhage in vivo, but only RTL nanofibers reduced blood loss versus sham (53% reduction, p < 0.05). Increasing the targeting ligand density of RTL nanofibers yielded qualitatively better binding to the site of injury and greater reductions in blood loss in vivo (p < 0.05). In fact, 100% RTL nanofiber reduced overall blood loss by 60% versus sham (p < 0.05). Evaluation of the biocompatibility of the RTL nanofiber revealed that it did not induce RBC hemolysis, did not induce neutrophil or macrophage inflammation at the site of liver injury, and 70% remained intact in plasma after 30 min. In summary, these studies demonstrate successful binding of peptides to TF in vitro and successful homing of a TF-targeted PA nanofiber to the site of hemorrhage with an associated decrease in blood loss in vivo. Thus, this therapeutic may potentially treat noncompressible hemorrhage.
We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases.
Atherosclerosis remains the number one cause of death and disability worldwide. Atherosclerosis is treated by revascularization procedures to restore blood flow to distal tissue, but these procedures often fail due to restenosis secondary to neointimal hyperplasia. Diabetes mellitus is a metabolic disorder that accelerates both atherosclerosis development and onset of restenosis. Strategies to inhibit restenosis aim at reducing neointimal hyperplasia by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Since increased production of reactive oxygen species promotes VSMC proliferation and migration, redox intervention to maintain vascular wall redox homeostasis holds the potential to inhibit arterial restenosis. Cinnamic aldehyde (CA) is an electrophilic Nrf2 activator that has shown therapeutic promise in diabetic rodent models. Nrf2 is a transcription factor that regulates the antioxidant response. Therefore, we hypothesized that CA would activate Nrf2 and would inhibit neointimal hyperplasia after carotid artery balloon injury in the Zucker Diabetic Fatty (ZDF) rat. In primary ZDF VSMC, CA inhibited cell growth by MTT with an EC50 of 118 ± 7 μM. At a therapeutic dose of 100 μM, CA inhibited proliferation of ZDF VSMC in vitro and reduced the proliferative index within the injured artery in vivo, as well as migration of ZDF VSMC in vitro. CA activated the Nrf2 pathway in both ZDF VSMC and injured carotid arteries while also increasing antioxidant defenses and reducing markers of redox dysfunction. Additionally, we noted a significant reduction of neutrophils (69%) and macrophages (78%) within the injured carotid arteries after CA treatment. Lastly, CA inhibited neointimal hyperplasia evidenced by a 53% reduction in the intima:media ratio and a 61% reduction in vessel occlusion compared to arteries treated with vehicle alone. Overall CA was capable of activating Nrf2, and inhibiting neointimal hyperplasia after balloon injury in a rat model of diabetic restenosis.
Engineered tumor-homing neural stem cells (NSCs) have shown promise in treating cancer. Recently, we transdifferentiated skin fibroblasts into human-induced NSCs (hiNSC) as personalized NSC drug carriers. Here, using a SOX2 and spheroidal culture-based reprogramming strategy, we generated a new hiNSC variant, hiNeuroS, that was genetically distinct from fibroblasts and first-generation hiNSCs and had significantly enhanced tumor-homing and antitumor properties. In vitro, hiNeuroSs demonstrated superior migration to human triple-negative breast cancer (TNBC) cells and in vivo rapidly homed to TNBC tumor foci following intracerebroventricular (ICV) infusion. In TNBC parenchymal metastasis models, ICV infusion of hiNeuroSs secreting the proapoptotic agent TRAIL (hiNeuroS-TRAIL) significantly reduced tumor burden and extended median survival. In models of TNBC leptomeningeal carcinomatosis, ICV dosing of hiNeuroS-TRAIL therapy significantly delayed the onset of tumor formation and extended survival when administered as a prophylactic treatment, as well as reduced tumor volume while prolonging survival when delivered as established tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.